Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:35:35.809Z Has data issue: false hasContentIssue false

Comparison of Epitaxial Graphene on Si-face and C-face 6H-SiC

Published online by Cambridge University Press:  23 March 2011

Shin Mou
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
J. J. Boeckl
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
L. Grazulis
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
B. Claflin
Affiliation:
Wright State University, Semiconductor Research Center, Dayton, OH 45435, USA
Weijie Lu
Affiliation:
Fisk University, Department of Chemistry, Nashville, TN 37208, USA
J. H. Park
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
W. C. Mitchel
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA
Get access

Abstract

We present atomic force microscopy (AFM), Hall-effect measurement, and Raman spectroscopy results from graphene films on 6H-SiC (0001) and (000-1) faces (Si-face and C-face, respectively) produced by radiative heating in a high vacuum furnace chamber through thermal decomposition. We observe that the formation of graphene on the two faces of SiC is different in terms of the surface morphology, graphene thickness, Hall mobility, and Raman spectra. In general, graphene films on the SiC C-face are thicker with higher mobilities than those grown on the Si-face.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I. V., and Firov, A.A., Science 306, 666 (2004).Google Scholar
2. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., Science 312, 1191 (2006).Google Scholar
3. Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellog, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Röhrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., and Seyller, Th., Naturer Mater. 8, 203 (2009).Google Scholar
4. Li, X., Zhu, Y., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L. and Ruoff, R. S., Science 324, 1312 (2009).Google Scholar
5. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Kim, B. H., Nature 457, 706 (2009).Google Scholar
6. Park, J., Mitchel, W. C., Grazulis, L., Smith, H. E., Eyink, K. G., Boeckl, J. J., Tomich, D. H., Pacley, S. D., and Hoelscher, J. E., Adv. Mater. 22, 4140 (2010).Google Scholar
7. Hwang, J., Shields, V. B., Thomas, C. I., Shivaraman, S., Hao, D., Kim, M., Woll, A. R., Tompa, G. S., and Spencer, M. G., J. Cryst. Growth 312, 3219 (2010).Google Scholar
8. Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H.-Y., Grill, A., Avouris, Ph., Science 327, 662 (2010).Google Scholar
9. Moon, J. S., Curtis, D., Bui, S., Hu, M., Gaskill, D. K., Tedesco, J. L., Asbeck, P., Jernigan, G. G., VanMil, B. L., Myers-Ward, R. L., Eddy, C. R. Jr., Campbell, P. M., and Weng, X., IEEE Electron Device Lett. 31. 260 (2010).Google Scholar
10. van Bommel, A. J., Crombeen, J. E., and van Tooren, A., Surf. Sci. 48, 463 (1975).Google Scholar
11. Tedesco, J. L., VanMil, B. L., Myers-Ward, R. L., McCrate, J. M., Kitt, S. A., Campbell, P. M.,2 Jernigan, G. G., Culbertson, J. C., Eddy, C. R. Jr.,1 and Gaskill, D. K., Appl. Phys. Lett. 95, 122102 (2009).Google Scholar
12. , Luxmi, Fisher, P. J., Srivastava, N., Feenstra, R. M., Yugang, Sun, Kedzierski, J., Healey, P., and Gong, Gu, Appl. Phys. Lett. 95, 073101 (2009).Google Scholar
13. Robinson, J. A., Wetherington, M., Tedesco, J. L., Campbell, P. M., Weng, X., Stitt, J., Fanton, M. A., Frantz, E., Snyder, D., VanMil, B. L., Jernigan, G. G., Myers-Ward, R. L., Eddy, C. R. Jr., and Gaskill, D. K., Nano Lett. 9, 2873 (2009).Google Scholar
14. Poon, S. W., Chen, W., Tok, E. S., and Andrew T.S., Wee, Appl. Phys. Lett. 92, 104102 (2008).Google Scholar
15. Tedesco, J. L., Jernigan, G. G., Culbertson, J. C., Hite, J. K., Yang, Y., Daniels, K. M., Myers-Ward, R. L., Eddy, C. R., Robinson, J. A., Trumbull, K. A., Wetherington, M. T., Campbell, P. M., and Gaskill, D. K., Appl. Phys. Lett. 96, 222103 (2010).Google Scholar
16. After the step bunching, the terrace width normally ranges from 0.5 μm to 2 μm. The step heights are higher when the terraces are wider where Fig. 1 (d) is an example.Google Scholar
17. Robinson, Joshua A., Puls, Conor P., Staley, Neal E., Stitt, Joseph P., Fanton, Mark A., Emtsev, Konstantin V., Seyller, Thomas, and Liu, Ying, Nano Lett., 9, 964 (2009).Google Scholar
18. Fig. 1 (e) shows pits holes on graphene while Fig. 1 (f) does not. We cannot confirm the origin of the pit holes but it is probably not due to the different growth temperature since they show up randomly in samples at various growth temperatures.Google Scholar
19. Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J. J., and Spencer, M. G., J. Electron. Mater. 38, 725 (2009).Google Scholar
20. Ni, Z. H., Chen, W., Fan, X. F., Kuo, J. L., Yu, T., Wee, A. T. S., and Shen, Z. X., Phys. Rev. B 77, 115416 (2008).Google Scholar
21. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., and Sood, A. K., Nat. Nanotech. 3, 210 (2008).Google Scholar
22. Ferrari, Andrea C., Solid State Comm. 143, 47 (2007).Google Scholar