Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:53:16.586Z Has data issue: false hasContentIssue false

A Comparison of an Improved Design for Two Integrated Optical Isolators Based on Nonreciprocal Mach-Zehnder Interferometry

Published online by Cambridge University Press:  10 February 2011

N. Bahlmann
Affiliation:
University of Osnabrück, 49069 Osnabrück, Germany
M. Lohmeyer
Affiliation:
University of Osnabrück, 49069 Osnabrück, Germany
M. Wallenhorst
Affiliation:
University of Osnabrück, 49069 Osnabrück, Germany
H. Dötsch
Affiliation:
University of Osnabrück, 49069 Osnabrück, Germany
P. Hertel
Affiliation:
University of Osnabrück, 49069 Osnabrück, Germany
Get access

Abstract

Nonreciprocal rib waveguide structures can be used to realize integrated optical isolators. The nonreciprocal phase shift is the difference between the forward and backward propagation constants of TM modes in magneto-optic waveguides. It can be optimized with respect to absolute value and temperature dependence if double layer waveguides with different magnetic and nonmagnetic layers are prepared. In this paper we propose an improved design for two different Mach-Zehnder interferometer isolators the nonreciprocal parts of which are formed by such double layer waveguides. One concept utilizes a nonreciprocal and a reciprocal arm. In the other case both arms are nonreciprocal but with opposite sign of the nonreciprocal phase shift. A particular property of both concepts is that the lengths of the nonreciprocal arms are well defined. The rest of the interferometer is made by reciprocal rib waveguides. Therefore, the nonreciprocal phase shift is well known. The concepts are compared with regard to isolation ratio, forward losses and fabrication tolerances. Moreover, we simulate the entire isolator by a finite difference beam propagation calculation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wolfe, R., Dillon, J.F. Jr, Lieberman, R. A., and Fratello, V. J., Applied Physics Letters, 57, (10), pp. 960, 1990.10.1063/1.103525Google Scholar
[2] Levy, M., Osgood, R. M. Jr, Hegde, H., Cadieu, F. J., Wolfe, R., and Fratello, V. J., IEEE Photonics Technology Letters, 8, (7), pp. 903905, 1996.10.1109/68.502265Google Scholar
[3] Ando, K., Okoshi, T., and Koshizuka, N., Applied Physics Letters, 53, (1), pp. 46, 1988.10.1063/1.100565Google Scholar
[4] Mizumoto, T., Kawaoka, Y., and Naito, Y., The Transactions of the IECE of Japan, E 69, (9), pp. 968972, 1986.Google Scholar
[5] Hemme, H., Détsch, H., and Hertel, P., Applied Optics, 29, (18), pp. 27412744, 1990.10.1364/AO.29.002741Google Scholar
[6] Yamamoto, S., Okamura, Y., and Makimoto, T., IEEE Journal of Quantum Electronics, QE–12, (12), pp. 764770, 1976.10.1109/JQE.1976.1069086Google Scholar
[7] Shintaku, T., Applied Physics Letters, 66, (21), pp. 27892791, 1995.10.1063/1.113476Google Scholar
[8] Auracher, F. and Witte, H.H., Optics Communications, 13, (4), pp. 435438, 1975.10.1016/0030-4018(75)90140-6Google Scholar
[9] Okamura, Y., Negami, T., and Yamamoto, S., Applied Optics, 23, (11), pp. 18861889, 1984.10.1364/AO.23.001886Google Scholar
[10] Yamamoto, S. and Makimoto, T., Journal of Applied Optics, 45, (2), pp. 882888, 1974.Google Scholar
[11] Koshiba, M. and Zhuang, X.P., Journal of Lightwave Technology, 11, (9), pp. 14531458, 1993.10.1109/50.241935Google Scholar
[12] Erdmann, A., Shamonin, M., Hertel, P., and Dötsch, H., Optics Communications, 102, (1,2), pp. 2530, 1993.10.1016/0030-4018(93)90466-IGoogle Scholar
[13] Shamonin, M. and Hertel, P., Applied Optics, 33, (27), pp. 64156421, 1994.10.1364/AO.33.006415Google Scholar
[14] Wallenhorst, M., Niemöller, M., Dötsch, H., Hertel, P., Gerhardt, R., and Gather, B., Journal of Applied Physics, 77, (7), pp. 29022905, 1995.10.1063/1.359516Google Scholar
[15] Bahlmann, N., Chandrasekhara, V., Erdmann, A., Gerhardt, R., Hertel, P., Lehmann, R., Salz, D., Schrbteler, F., Wallenhorst, M., and Dòtsch, H., Journal of Lightwave Technology, to be published in May 1998.Google Scholar
[16] Mizumoto, T., Mashimo, S., Ida, T., and Naito, Y., IEEE Transactions on Magnetics, 29, (6), pp. 34173419, 1993.10.1109/20.281181Google Scholar
[17] Yokoi, H. and Mizumoto, T., Electronics Letters, 33, (21), pp. 17871788, 1997.10.1049/el:19971253Google Scholar
[18] Löbl, P., Huppertz, M., and Mergel, D., Thin Solid Films, 251, pp. 7279, 1994.10.1016/0040-6090(94)90843-5Google Scholar
[19] Karthe, W. and Miiller, R., Integrierte Optik, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1991.Google Scholar
[20] Chung, Y. and Dagli, N., IEEE Journal of Quantum Electronics, 26, (8), pp. 13351339, 1990.10.1109/3.59679Google Scholar
[21] Erdmann, A. and Hertel, P., IEEE Journal of Quantum Electronics, 31, (8), pp. 15101516, 1995.10.1109/3.400404Google Scholar
[22] Hadley, G. R., Optics Letters, 16, (9), pp. 624626, 1991.10.1364/OL.16.000624Google Scholar