Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:03:36.207Z Has data issue: false hasContentIssue false

Comparative Study in Magnetic Properties of Ni/Co/Pt(111) and Co/Ni/Pt(111)

Published online by Cambridge University Press:  21 March 2011

Yao-Jung Chen
Affiliation:
Department of Physics, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Rd., Taipei, 116, Taiwan Department of computer and communication engineering, Taipei college of maritime technology, 212, Sec. 9, Yan-Pin N. Rd., Taipei, 11174, Taiwan
H. Y. Ho
Affiliation:
Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 115, Taiwan
C. S. Shern
Affiliation:
Department of Physics, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Rd., Taipei, 116, Taiwan
Get access

Abstract

Magneto-optical Kerr effect (MOKE), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES) were used to study the magnetic properties and the growth modes of thin Ni films on 1ML Co/Pt(111) and Co /1 ML Ni/Pt(111) at room temperature (RT). Because the lattice constants of Co and Ni are only slightly different, both growth modes have similar behavior. They grow 2 ML in layer-by-layer mode then turn to 3-D island growth. On the contrary, the magnetic properties have great difference. For Ni/1 ML Co/Pt(111), the easy axis of magnetization changed from the canted state to the out-of-plane direction when the Co buffer layer was inserted into Ni/Pt(111). The perpendicular magnetization persisted to 24 ML of Co thin films. This spin reorientation transition can be understood by the change of effective interface magnetic anisotropy. For Co/1 ML Ni/Pt(111), Kerr signal was not observed when the thickness of Co film was below 3 ML, and the easy axis of the magnetization was in-plane when the thickness of Co was greater than 3 ML at RT. The polar Kerr signal appeared after the sample was annealed at 450 K for 1 ML of Co. Further studies in the magnetic properties and surface composition of 3 ML Co/1 ML Ni/Pt(111) during an annealing process showed that the out-of-plane magnetization enhanced significantly when Co and Ni atoms diffused into the Pt substrate.

The Curie temperature (TC) of both systems can be adjusted by changing the annealing temperature. Measuring at RT, TC decreased when the annealing temperature rose. However, the change rates were different in these two mirror systems. The possible mechanism of the evolution in the magnetic property with the interface structure was comparatively discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kottler, V., Chappert, C., Essaidi, N., and Chen, Y., IEEE Trans. Magn. 34, 2012 (1998).Google Scholar
2. Kawada, Y., Ueno, Y., and Shibata, Y., IEEE Trans. Magn. 38, 2045 (2002).Google Scholar
3. Shern, C. S., Tsay, J. S., Her, H. Y., Wu, Y. E., and Chen, R. H., Surf. Sci. 429, L497 (1999).Google Scholar
4. Huang, F., Kief, M.T., Mankey, G.J., Willis, R.F., Phys. Rev. B 49, 3962 (1994).Google Scholar
5. Onoue, T., Siekman, M. H., Abelmann, L., and Lodder, J. C., J. Magn. Magn. Mater. 272–276, 2317 (2004).Google Scholar
6. Wang, H., Zhao, H. W., Zhu, T., Li, X., and Zhan, W., J. Appl. Phys. 91, 3111 (2002).Google Scholar
7. Krishnan, R., Lassri, H., Seddat, M., and Tessier, M., Appl. Phys. Lett. 64, 2312 (1994).Google Scholar
8. McDaniel, Terry W, J. Phys.: Condens. Matter 17, R315 (2005).Google Scholar
9. Ho, H.Y., Chen, Y.J., Chen, R.H., and Shern, C.S., J. Appl. Phys. 99, 123914 (2006).Google Scholar
10. Grütter, P., Dürig, U.T., Phys. Rev. B 49, 2021 (1994).Google Scholar
11. Tsay, J. S. and Shern, C. S., Surf. Sci. 396, 319 (1998).Google Scholar
12. Su, C. W., Ho, H. Y., Shern, C. S., and Chen, R. H., Surf. Sci. 499, 103(2002).Google Scholar
13. He, Y.-L., Zuo, J.-K., Wang, G.-C., and Low, J. J., Surf. Sci. 255, 269 (1991).Google Scholar
14. Wu, Y.E., Su, C.W., Shern, C.S., and Lin, Minn-Tsong, Chinese J. Phys. 39, 182 (2001).Google Scholar
15. Lin, M.-T., Kuo, C.C., Ho, J.W., Wu, Y.E., Her, H.Y., Shern, C.S., and Huang, H.L., Appl. Surf. Sci. 169–170, 231 (2001).Google Scholar
16. Shern, C.S., Ho, H. Y., Lin, S. H., and Su, C. W., Phys. rev. B 70, 214438 (2004).Google Scholar
17. Chen, F.C., Wu, Y.E., Su, C.W., and Shern, C.S., Phys. Rev. B 66, 184417 (2002).Google Scholar
18. Engel, B.N., Wiedmann, M.H., and Falco, C.M., J. Appl. Phys. 75, 6401 (1994).Google Scholar
19. Krishnan, R., Lassri, H., Prasad, Shiva, and Tessier, M., J. Appl. Phys. 73, 6433 (1993).Google Scholar
20. Johnson, M.T., deVries, J.J., McGee, N.W.E., aandeStegge, J., and den Broeder, F.J.A., Phys. Rev. Lett. 69, 3575 (1992).Google Scholar
21. Zhang, Z., Wigen, P.E., and Parkin, S.S.P., J. Appl. Phys. 69, 5649 (1991).Google Scholar
22. Seddat, M., Tessier, M., Krishnan, R., Lasseri, H., Visnovsky, S., Kulharni, S. K., and Vedpathak, M., J. Phys. D: Appl. Phys. 33, 1662 (2000).Google Scholar
23. Robach, Q., Quiros, C., Steadman, P., Peters, K. F., Lundgren, E., Alvarez, J., Isern, H., and Ferrer, S., Phys. Rev. B 65, 054423 (2002).Google Scholar
24. Kim, J., Lee, J.-W., Jeong, J.-R., Shin, S.-C., Ha, Y.H., Park, Y., and Moon, D.W., Phys. Rev. B 65, 104428 (2002).Google Scholar
25. Train, C., Beauvillain, P., Mathet, V., and eillet, P., J. Appl. Phys. 86, 3165 (1999).Google Scholar
26. Inase, T. and Kondo, A., J. Appl. Phys. 69, 5160 (1991).Google Scholar
27. Ho, H.Y., Chen, Y.J., Huang, E.J., Yu, S. K., and Shern, C.S., Appl. Phys. Lett. (accepted)Google Scholar
28. Ho, H.Y., Lin, Y.S., Huang, E.J., Chen, Y.J., and Shern, C.S., Surface Science 601, 615 (2007).Google Scholar
29. Baudoing-Savois, R, Dolle, P, Gauthier, Y, Saint-Lager, M C, De Santis, M and Jahns, V, J. Phys. Condens. Matter 11, 8355 (1999).Google Scholar
30. Shanchez, J.M., Moràn-Lòpez, J.L., and Cadeville, M.C., Phys.:Condens. Matter 1, 491 (1989).Google Scholar
31. Dahmani, C.E., Cadeville, M.C., Sanchez, J.M., and Moràn-Lòpez, J.L., Phys. Rev. Lett. 55, 1208 (1985).Google Scholar
32. Crangle, J., and Scott, W.R., J. Appl. Phys. 36, 921 (1965).Google Scholar
33. Schultz, T., Mattis, D., and Lieb, E., Rev. Mod. Phys. 36, 856 (1964).Google Scholar
34. Kosterlitz, J.M. and Thouless, D.J., J. Phys. C 6, 1181 (1993).Google Scholar
35. Guillou, J.C. Le and Zinn-Justin, J., Phys. Rev. B 21, 3976 (1980).Google Scholar
36. Dürr, W., Taborelli, M., Paul, O., Germar, R., Gudat, W., Pescia, D., and Landolt, M., Phys. Rev. Lett. 62, 206 (1989).Google Scholar
37. Huang, F., Kief, M.T., Mankey, G.J., and Willis, R.F., Phys. Rev. B 49, 3962 (1994).Google Scholar