Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:30:49.659Z Has data issue: false hasContentIssue false

Combined Ion-Beam and Laser-Beam Synthesis of Silver Oxide Nanoclusters in Soda-Lime Glass

Published online by Cambridge University Press:  03 September 2012

R. F. Haglund Jr.
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, [email protected]
D. H. Osborne Jr.
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, [email protected]
F. Gonella
Affiliation:
Unit´. INFM, Dipartimento di Chimica Fisica, Calle Larga Santa Maria 2137, 1–30123 Venezia, Italy
P. Mazzoldi
Affiliation:
Unit´. INFM, Dipartimento di Chimica Fisica, Calle Larga Santa Maria 2137, 1–30123 Venezia, Italy
G. Battaglin
Affiliation:
Unit´ INFM, Dipartimento di Fisica, Universitd´ di Padova, via Marzolo 8, 1–35131 Padova, Italy
Get access

Abstract

Ion beam deposition offers a number of interesting possibilities for creating nonlinear materials for photonic devices such as waveguides. Ion beams have been used by a number of groups to create metal and semiconductor nanocrystallites in silica and other glassy substrates in a geometry suitable for shallow channel waveguides. In this paper, we describe the use of He ion beams to initiate nucleation of Ag nanocrystallites in ion-exchanged soda-lime glass. The nanocrystallites are remarkably uniform in size, and exhibit substantial third-order optical nonlinearity. The combination of ion exchange and ion implantation has an advantage over conventional implantation techniques because it produces guiding layers deep enough (several microns) to form practical channel waveguides. In addition, we have shown that it is possible, by means of subsequent laser irradiation, to further alter the properties of the nonlinear composite material. In this particular case, irradiation by visible or infrared laser beams following ion implantation induces oxidation of the silver nanocrystallites, as documented by Auger analysis of the composite material. Furthermore, the third-order nonlinearity of the composite material changes sign, changing a self-focusing nonlinearity into one which is self-defocusing. These experiments suggest a number of possibilities for combining ion- and laser-beam irradiation to create laterally structured waveguide materials as well as nonlinear channel waveguides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ricard, D., Roussignol, Ph., and Flytzanis, Chr., Opt. Lett. 10, 511513 (1985).Google Scholar
2. Tokizaki, T., Nakamura, A., Tanimura, T. and Itoh, N., Appl. Phys. Lett. 65, 941 (1994).Google Scholar
3. Yang, Li, Becker, K., Smith, F. M., Magruder, R. H. III, Haglund, R. F. Jr, Yang, Lena, Dorsinville, R., Alfano, R. R., and Zuhr, R. A., J. Opt. Soc. Am. B 11 (3), 457461 (1994).Google Scholar
4. Arnold, G. W., De Marchi, G., Gonella, F., Mazzoldi, P., Quaranta, A., Battaglin, G., Catalano, M., Garrido, F. and Haglund, R. F. Jr., Nucl. Instrum. Meth. in Phys. Research B 116, 507 (1996).Google Scholar
5. Tien, P. K., Rev. Mod. Phys. 49, 361 (1977).Google Scholar
6. Gonella, F., Mattei, G., Mazzoldi, P., Cattaruzza, E., Arnold, G. W., Battaglin, G., Calvelli, P. Polloni, R., Bertoncello, R. and Haglund, R. F. Jr., Appl. Phys. Lett. 69 (20), 3101 (1996).Google Scholar
7. Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. and Van Stryland, E. W., IEEE J. Quantum Electron. QE–26, 760 (1990).Google Scholar
8. Weaire, D., Wherrett, B. S., Miller, D. A. B. and Smith, S. D., Opt. Lett. 4, 331 (1974).Google Scholar
9. Yang, Li Ph. D.dissertation, Vanderbilt University, unpublished (1993).Google Scholar
10. Wood, R. A., Townsend, P. D., Skelland, N. D., Hole, D. E., Barton, J. and Afonso, C. N., J. Appl. Phys. 74, 5754 (1993).Google Scholar
11. Yang, Li, Osborne, D. H., Haglund, R. F. Jr., Magruder, R. H., White, C. W., Zuhr, R. A. and Hosono, H., Appl. Phys. A 16, 503 (1996).Google Scholar
12. Tjeng, L. H., Meinders, M. B. J., van Elp, J., Ghijsen, J., Sawatzky, G. A. and Johnson, R. L., Phys. Rev. B 41, 3190 (1990).Google Scholar
13. Park, K-T, Novikov, D. L., Gubanov, V. A. and Freeman, A. J., Phys. Rev. B 49. 4425 (1994).Google Scholar
14. Itoh, N., Tanimura, K., Nakamura, A. and Itoh, K., J. Appl. Phys. 64, 3827 (1988)Google Scholar
15. Miotello, A., J. Phys. C: Condens. Matter 3, 2589 (1989).Google Scholar
16. Hoheisel, W., Jungmann, K., Vollmer, M., Weidenauer, R. and Trdger, F., Phys. Rev. Lett. 60, 1649 (1988).Google Scholar
17. Vollmer, M., Weidenauer, R., Hoheisel, W., Schulte, U. and Triger, F., Phys. Rev. B 40, 12509 (1989).Google Scholar