Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T07:54:27.905Z Has data issue: false hasContentIssue false

CIGS2 Thin Film Solar Cells on Stainless Steel Foil

Published online by Cambridge University Press:  21 March 2011

Neelkanth G. Dhere
Affiliation:
Florida Solar Energy Center 1679 Clearlake Road, Cocoa, FL 32922-5703
Shantinath R. Ghongadi
Affiliation:
Florida Solar Energy Center 1679 Clearlake Road, Cocoa, FL 32922-5703
Get access

Abstract

CuIn1−xGaxS2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CuIn1−xGaxSe2−ySy (CIGS) and CIGS2 solar cells are expected to be superior to Si and GaAs solar cells for the space missions especially in terms of the performance at the end of low earth orbit (LEO) mission. Ultra-lightweight thin-film solar cells deposited on flexible stainless steel (SS) foils have a potential for achieving high specific power.

Magnetron-sputter-deposition parameters of molybdenum back-contact layer were optimized so as to minimize residual stress. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa(22%) and In targets. Well-adherent, large (3 μm), compact-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar:H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475° C for 60 minutes with intermediate 30 minute annealing step at 120° C. p-type CIGS2 thin films were obtained by etching away the Cu- rich layer segregated at the surface in a dilute KCN solution. XRD analysis of a CIGS2 film on SS foil revealed growth of chalcopyrite CIGS2 phase having ao= 5.519 Å and co= 11.125 Å and {112} preferred orientation. Positive SIMS depth profile of CIGS2 film showed gallium concentration increasing toward the back contact.

Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO:Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal mask. PV parameters of a CIGS2 solar cell on SS flexible foil measured under AM 0 conditions at the NASA GRC were: Voc = 802.9 mV, Jsc = 25.07 mA/cm2, FF = 60.06%, and η = 8.84%. For this cell, AM 1.5 PV parameters measured at NREL were: Voc = 788 mV, Jsc = 19.78 mA/cm2, FF = 59.44%, η = 9.26%. Quantum efficiency curve showed a sharp QE cutoff equivalent to CIGS2 bandgap of ∼1.50 eV, fairly close to the optimum value for efficient AM0 PV conversion in the space.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bailey, S. G. and Flood, D. J., Prog. Photovolt. Res. Appl. 6, 114, (1998).Google Scholar
2. Dhere, N. G. and Ghongadi, S. R., Proc. 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, (2000).Google Scholar
3. Iles, P. A., Solar Energy Materials and Solar Cells 68, 113, (2001).Google Scholar
4. Glaser, P. E., Hanley, G. M., Nansen, R. H., and Kline, R. L., IEEE Spectrum, pp. 5258 (May 1979).Google Scholar
5. Ralph, E. L., and Woike, T. W., Proceedings of 37th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit pp. 17 (1999).Google Scholar
6. Tringe, J., Merrill, J., and Reinhardt, K., Proc. 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, (2000).Google Scholar
7. Messenger, S., Walters, R., Summers, G., Morton, T., Roche, G. La, Signorini, C., Anzawa, O., and Matsuda, S., Proc. 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, (2000).Google Scholar
8. Boden, A., Bräunig, D., Klaer, J., Karg, F. H., Hösselbarth, B., Roche, G. La, Proc. 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, (2000).Google Scholar
9. Thornton, J. A., Tabock, J., and Hoffman, D. W., Thin Solid Films 64, 111119, (1979).Google Scholar