Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-01T09:43:03.186Z Has data issue: false hasContentIssue false

Characterizing the Magneto-optic Properties of Amorphous Rare Earth - Transition Metal Thin Films

Published online by Cambridge University Press:  10 February 2011

W. A. Challener*
Affiliation:
Imation Corp., Advanced Technology Center, I Imation Place, Oakdale, MN 55128
Get access

Abstract

The amorphous rare earth - transition metal (RE-TM) thin film alloys and nanolayered materials exhibit numerous properties advantageous for optical recording, including perpendicular anisotropy, high coercivity and low magnetization at room temperature, low noise, and easily adjustable Curie and compensation points. As a result these materials have been employed in all commercial magneto-optic (MO) media. On the other hand, the MO effect of these materials is relatively small and tends to decrease with decreasing wavelength. It is important to understand the useful limits of these materials in MO media, and to determine if their MO figure of merit can be substantially increased through appropriate doping or nanolayering. In this paper we discuss experimental techniques for measuring MO properties, a theoretical approach for analyzing the data and designing optical thin film stacks, and results for a variety of RE-TM thin film materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chaudhari, P., Cuomo, J. J., and Gambino, R. J., Appl. Phys. Lett. 22, 337 (1973).10.1063/1.1654662Google Scholar
2. Daval, J. and Bechevet, B., J. Magn. Magn. Mater. 129, 98 (1994).10.1016/0304-8853(94)90434-0Google Scholar
3. Zhang, S. J., Li, X. L., Yang, X. Y., and Zhang, F. P., J. Appl. Phys. 69, 5994 (1991).10.1063/1.347789Google Scholar
4. Aratani, K., Kobayashi, T., Tsunashima, T., and Uchiyama, S., J. Appl. Phys. 57, 3903 (1985).10.1063/1.334910Google Scholar
5. Iijima, T. and Hatakeyama, I., IEEE Trans. Magn. MAG–23, 2626 (1987).10.1109/TMAG.1987.1065409Google Scholar
6. Kirino, F., Ohta, N., and Ogihara, N., J. Electrochem. Soc. 139, 187 (1992).10.1149/1.2069167Google Scholar
7. Kirino, F., Ogihara, N., and Ohta, N., J. Electrochem. Soc. 138, 2259 (1991).10.1149/1.2085958Google Scholar
8. Zheng, G. G., Iijima, T., and Rao, K. V., J. Magn. Soc. Jpn. 15 Supp. S1, 193 (1991).10.3379/jmsjmag.15.S1_193Google Scholar
9. Hatwar, T. K. and Stinson, D. G., J. Appl. Phys. 69, 4963 (1991).10.1063/1.348189Google Scholar
10. Horiai, N., Ohashi, T., Yoshida, S., Miura, M., Tokushima, T., and Fujii, T., J. Appl. Phys. 69, 4764 (1991).10.1063/1.348272Google Scholar
11. Hairston, D. K., and Kryder, M. H., J. Appl. Phys. 63, 3621 (1988).10.1063/1.340690Google Scholar
12. Challener, W. A., J. Phys. Chem. Solids 56, 1499 (1995).10.1016/0022-3697(95)00119-0Google Scholar
13. Peng, C. and Mansuripur, M., Appl. Opt. 37, 921 (1998).10.1364/AO.37.000921Google Scholar
14. Gamble, R., Lissberger, P. H., and Parker, M. R., IEEE Trans. Mag. MAG–21, 1651 (1985).10.1109/TMAG.1985.1063908Google Scholar
15. Mansuripur, M., Appl. Phys. Lett. 49, 19 (1986).10.1063/1.97087Google Scholar
16. Challener, W. A., SPIE Proc. 3109, 52 (1997).10.1117/12.280693Google Scholar
17. Atkinson, R., Salter, I. W., and Xu, J., J. Magn. Magn. Mater. 102, 357 (1991).10.1016/0304-8853(91)90149-5Google Scholar
18. Atkinson, R., J. Magn. Magn. Mater. 124, 178 (1993).10.1016/0304-8853(93)90086-HGoogle Scholar
19. Atkinson, R., Salter, I. W., and Xu, J., J. Magn. Magn. Mater. 104–107, 1013 (1992).10.1016/0304-8853(92)90466-2Google Scholar
20. Victora, R. H., Brucker, C. F., Hatwar, T. K., Hurst, J. E., Uryson, B., and Kams, D., J. Appl. Phys. 81, 3833 (1997).10.1063/1.364898Google Scholar
21. Victora, R. H., private communication.Google Scholar
22. McGuire, T. R., Gambino, R. J., Bell, A. E., and Sprokel, G. J., J. Magn. Magn. Mater. 54–57, 1387 (1986).10.1016/0304-8853(86)90864-4Google Scholar
23. Connell, G. A. N., J. Magn. Magn. Mater. 54–57, 1561 (1986).10.1016/0304-8853(86)90927-3Google Scholar
24. Suzuki, T. and Katayama, T., IEEE Trans. Magn. MAG–22, 1230 (1986).10.1109/TMAG.1986.1064320Google Scholar
25. Honda, S. and Yoshiyama, M., Jpn. J. Appl. Phys. 27, 1687 (1988).10.1143/JJAP.27.1687Google Scholar
26. Hansen, P., Raasch, D., and Mergel, D., J. Appl. Phys. 75, 5267 (1994).10.1063/1.355726Google Scholar
27. Tsunashima, S., Otani, T., Yu, X. Y., and Uchiyama, S., J. Magn. Magn. Mater. 104–107, 1021 (1992).10.1016/0304-8853(92)90470-9Google Scholar
28. Gambino, R. J. and McGuire, T. R., J. Magn. Magn. Mater. 54–57, 1365 (1986).10.1016/0304-8853(86)90859-0Google Scholar
29. Weller, D., and Reim, W., MRS Symp. Proc. 150, 33 (1989).10.1557/PROC-150-33Google Scholar
30. Tanaka, H. and Takayama, S., J. Appl. Phys. 67, 5334 (1990).10.1063/1.344602Google Scholar
31. Akihiro, M., Satoh, T., Tada, J., and Satoh, T., IEEE Trans. Magn. MAG–22, 928 (1986).10.1109/TMAG.1986.1064532Google Scholar
32. Hansen, P., Clausen, C., Much, G., Rosenkranz, M., and Witter, K., J. Appl. Phys. 66, 756 (1989).10.1063/1.343551Google Scholar
33. Rusakov, V. S., Vvedensky, B. S., Voropaeva, E. T., and Nikolaev, E. N., IEEE Trans. Magn. 28 2524 (1992).10.1109/20.179544Google Scholar
34. Urner-Wille, M., J. Magn. Magn. Mater. 15–18, 1339 (1980).10.1016/0304-8853(80)90312-1Google Scholar
35. Challener, W. A. and Grove, S. L., Appl. Opt. 29, 3040 (1990).10.1364/AO.29.003040Google Scholar