Article contents
Characterization of Self-Assembled SnO 2 Nanoparticles for Fabrication of a High Sensitivity and High Selectivity Micro-Gas Sensor
Published online by Cambridge University Press: 15 March 2011
Abstract
In order to refine further the material technology for tin-oxide based gas sensing we are exploring the use of precision nanoparticle deposition for the sensing layer. Layers of SnO2 nanoparticles were grown on Quartz Crystal Microbalance (QCM) resonators using the layer-by-layer self-assembly technique. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Diffraction Pattern (EDP) analyses were performed on the self-assembled layers of SnO2 nanoparticles. The results showed that SnO2 nanoparticle films are deposited uniformly across the substrate. The size of the nanoparticles is estimated to be about 3-5 nm. Electrical characterization was done using standard current-voltage measurement technique, which revealed that SnO2 nanoparticle films exhibit ohmic behavior. Calcination experiments have also been carried out by baking the substrate (with self-assembled nanoparticles) in air at 350°C. Results show that 50%-70% of the polymer layers (which are deposited as precursor layers and also alternately in-between SnO2 nanoparticle monolayers) are eliminated during the process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
REFERENCES
- 1
- Cited by