Published online by Cambridge University Press: 01 February 2011
Electroluminescence studies of MBE-grown Er/O-doped Si-diodes at reverse bias have been done. For some devices there is much reduced thermal quenching of the emission at 1.54 νm. There are examples where the temperature dependence is abnormal in that the intensity for a constant current even increases with temperature up to e.g. 80 °C. These devices have been studied with cross-sectional transmission electron microscopy to see the microstructure of the Er/O-doped layers as well as the B-doped SiGe-layers that are used as electron emitters during reverse bias. Although there are defects in the layers there is no evidence for large thick precipitates of SiO2. While reduced thermal quenching often is attributed to having the Er-ions within SiO2 layers, this is not the case for our structures as evidenced by our TEM-studies. The origin of the abnormal temperature dependence is attributed to the two mechanisms of breakdown in the reverse-biased diodes. At low temperature the breakdown current is mainly due to avalanche resulting in low-energy electrons and holes that quenches the intensity by Auger deexcitation of the Er-ions. At higher temperature the breakdown current is mainly phonon-assisted tunneling which results in a more efficient pumping with less de-excitation of the Er-ions. Finally at the highest temperatures the thermal quenching sets in corresponding to an activation energy of 125 meV, which is slightly lower than 150 meV that has been reported in other studies.