Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:45:58.606Z Has data issue: false hasContentIssue false

Carbon Nanotube - Silicon Heterojunction Hyperspectral Photocurrent Response

Published online by Cambridge University Press:  01 February 2011

Teng-fang Kuo
Affiliation:
[email protected], Brown University, Division of Engineering, Providence, RI, 02912, United States
Daniel A. Straus
Affiliation:
[email protected], Brown University, Division of Engineering, Providence, RI, 02912, United States
Marian Tzolov
Affiliation:
[email protected], Lock Haven University of Pennsylvania, Department of Geology and Physics, Lock Haven, PA, 17745-9988, United States
Jimmy Xu
Affiliation:
[email protected], Brown University, Division of Engineering, Providence, RI, 02912, United States
Get access

Abstract

Carbon nanotubes (CNT) have been studied intensively for explorations of their unique electrical and mechanic properties in many applications. However, direct and functional integration of carbon nanotubes with silicon to form an electronically functional structure or device has remained a great challenge. Whereas vertically aligned bundles of nanotubes have been grown previously on silicon, the integration is mechanical, rather than electronical, in nature and the application of such mechanical integration is rather limited. In this work, we report on electronically functional integration of carbon nanotube with silicon, i.e., the formation of an electronic heterojunction by controlled growth of vertical and highly ordered array of ‘carbon nanotube - silicon’ (CNTS) heterojunctions of uniform diameter, length, and alignment. Moreover, we examine it as a hyperspectral photodiode. From the measured spectral dependence of the photocurrent, one may also extract the band gap of the nanotubes, which we find to be in agreement with that determined from conductance measurements. Mechanism of the infrared photocurrent response is elucidated by the current-voltage (I-V) and radiation intensity-photoresponse measurements. The linear intensity dependence of the photoresponse in the absorption ranges of Silicon and CNTs and the measured I-V characteristics all suggest that the photocurrent responses corresponding to the Silicon and CNT bands both originate from the intrinsic functionality of the heterojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. and Dekker, C., Nature 391 (1998) 59.Google Scholar
[2] Cabria, I., Mintmire, J. W. and White, C. T., Physical Review B 67 (2003).Google Scholar
[3] White, C. T., Robertson, D. H. and Mintmire, J. W., Physical Review B 47 (1993) 5485.Google Scholar
[4] Poncharal, P., Wang, Z. L., Ugarte, D. and de Heer, W. A., Science 283 (1999) 1513.Google Scholar
[5] Baughman, R. H., Cui, C. X., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G, Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S. and Kertesz, M., Science 284 (1999) 1340.Google Scholar
[6] Reulet, B., Kasumov, A. Y., Kociak, M., Deblock, R., Khodos, , II, Gorbatov, Y. B., Volkov, V. T., Journet, C. and Bouchiat, H., Physical Review Letters 85 (2000) 2829.Google Scholar
[7] Xu, J. M., Infrared Physics & Technology 42 (2001) 485.Google Scholar
[8] Rakitin, A., Papadopoulos, C. and Xu, J. M., Physical Review B 61 (2000) 5793.Google Scholar
[9] Misewich, J. A., Martel, R., Avouris, P., Tsang, J. C., Heinze, S. and Tersoff, J., Science 300 (2003) 783.Google Scholar
[10] Tans, S. J., Verschueren, A. R. M. and Dekker, C., Nature 393 (1998) 49.Google Scholar
[11] Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V. and McEuen, P. L., Nano Letters 2 (2002) 869.Google Scholar
[12] Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. and Avouris, P., Journal of Vacuum Science & Technology B 20 (2002) 2798.Google Scholar
[13] Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M. and Dai, H. J., Nature Materials 1 (2002) 241.Google Scholar
[14] Freitag, M., Martin, Y., Misewich, J. A., Martel, R. and Avouris, P. H., Nano Letters 3 (2003) 1067.Google Scholar
[15] Lu, S. X. and Panchapakesan, B., Nanotechnology 17 (2006) 1843.Google Scholar
[16] Levitsky, I. A. and Euler, W. B., Applied Physics Letters 83 (2003) 1857.Google Scholar
[17] Chang, C. S., Chattopadhyay, S., Chen, L. C., Chen, K. H., Chen, C. W., Chen, Y. F., Collazo, R. and Sitar, Z., Physical Review B 68 (2003).Google Scholar
[18] Jung, S. H., Jeong, S. H., Kim, S. U., Hwang, S. K., Lee, P. S., Lee, K. H., Ko, J. H., Bae, E., Kang, D., Park, W., Oh, H., Kim, J. J., Kim, H. and Park, C. G., Small 1 (2005) 553.Google Scholar
[19] Luo, J. and Zhu, J., Nanotechnology 17 (2006) S262.Google Scholar
[20] Kouklin, N., Tzolov, M., Straus, D., Yin, A. and Xu, J. M., Applied Physics Letters 85 (2004) 4463.Google Scholar
[21] Li, J., Papadopoulos, C., Xu, J. M. and Moskovits, M., Applied Physics Letters 75 (1999) 367.Google Scholar
[22] Tzolov, M., Chang, B., Yin, A., Straus, D., Xu, J. M. and Brown, G., Physical Review Letters 92 (2004).Google Scholar
[23] Hu, J. T., Min, O. Y., Yang, P. D. and Lieber, C. M., Nature 399 (1999) 48.Google Scholar
[24] Lampert, M. A., Physical Review 103 (1956) 1648.Google Scholar
[25] Batista, J., Mandelis, A. and Shaughnessy, D., Applied Physics Letters 82 (2003) 4077.Google Scholar
[26] Lehman, J. H., Engtrakul, C., Gennett, T. and Dillon, A. C., Applied Optics 44 (2005) 483.Google Scholar
[27] Heremans, J., Rahim, I. and Dresselhaus, M. S., Physical Review B 32 (1985) 6742.Google Scholar
[28] Yi, W., Lu, L., Zhang, D. L., Pan, Z. W. and Xie, S. S., Physical Review B 59 (1999) R9015.Google Scholar