Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T16:04:51.229Z Has data issue: false hasContentIssue false

Atomic-Scale Structure of the Si-SiO2 and SiC-SiO2 Interfaces and the Origin of Their Contrasting Properties

Published online by Cambridge University Press:  10 February 2011

Ryszard Buczko
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Stephen J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Sokrates T. Pantelides
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Get access

Abstract

One of the reasons for the dominance of Si in microelectronics is the quality of the Si-SiO2 interface. In contrast, development of SiC-based MOSFETs for power applications is hampered primarily by poor carrier mobility at the SiC-SiO2 interface. Here we review recent calculations that elucidate the reasons of the contrasting properties of the two interfaces. In the case of Si, the interface energy is in fact lower when the interface is abrupt and smooth because of the intrinisic geometry of the Si (001) surface and the softness of the Si-O-Si angle. However, two energe ically degenerate phases are possible, leading to domain boundaries, that are the cause of subcxide bonds, steps, and dangling bonds. In principle, these effects may be avoidable by low-temperature deposition. In contrast, the geometry and bond lengths of SiC surfaces are not suitable for abrupt and smooth interfaces, requiring the existence of a nonstoichiometric interlayer that may be the cause of the reduced mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

On leave from the Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland.

References

REFERENCES

1.Pantelides, S. T., Long, M., The Physics of SiO2 and its Interfaces, (Pergamon, New York, 1978).Google Scholar
2.DiVentra, M. and Pantelides, S. T., Phys. Rev. Lett. 83, 1624 (1999).Google Scholar
3.Himpsel, F. J. et al. , Phys. Rev. B 38, 6084 (1988): A. Pasquarello et al. Phys. Rev. Lett. 74, 1024 (1995).Google Scholar
4.Ourmazd, A. et al. , Phys. Rev. Lett. 59, 213 (1987).Google Scholar
5.Akatsu, H. and Ohdomari, I., Appl. Surf. Sci. 41/42, 357 (1989).Google Scholar
6.Gurevich, A. B. et al. Phys. Rev. B 58, R 13434 (1998).Google Scholar
7.Smith, P.V. and Wander, A., Surf. Sci 219, 77 (1989); Y. Miyamoto and A. Oshiyama, Phys. Rev. B 41, 12680 (1990): T. Hoshino et al., Phys. Rev. B 50, 14999 (1994): N. A. Modine, G. Zumbach, and E. Kaxiras, (unpublished)Google Scholar
8.Herman, F. and Kasowski, R.V., J. Vac. Sci. Tech. 19, 395 (1985).Google Scholar
9.Pasquarello, A., Hybertsen, M. S., and Car, R., Appl. Phys. Lett. 68, 625 (1996); Phys. Rev. B56, 10942 (1996); A. Pasquarello, M. S. Hybertsen, R. and Car, Nature 396, 58 (1998)Google Scholar
10.Kageshima, H. and Shiraishi, K., Phys. Rev. Lett. 81, 5936 (1998).Google Scholar
11.Ramamoorthy, M. and Pantelides, S.T., Appl. Phys. Lett. 75, 115 (1999).Google Scholar
12.Buczko, R., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett., in press.Google Scholar
13.Payne, M.C. et al. , Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
14.Ohdomari, I., Mihara, T., and Kai, K., J. Appl. Phys. 60, 3900 (1986) used Si-O-Si-Si bridges to build a model interface.Google Scholar
15.Bernhardt, J. et al. , Appl. Phys. Lett. 74, 1084 (1999).Google Scholar
16.Poindexter, E.H. et al. , J Appl. Phys. 52, 879 (1981)Google Scholar