Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:28:38.091Z Has data issue: false hasContentIssue false

Atomic Interdiffusion in Amorphous Silicon and Germanium

Published online by Cambridge University Press:  26 February 2011

P. D. Persans
Affiliation:
Exxon Research and Engineering Co. Annandale, NJ 08801
A. F. Ruppert
Affiliation:
Exxon Research and Engineering Co. Annandale, NJ 08801
Get access

Abstract

We present measurements of interdiffusion in amorphous silicon/amorphous germanium compositional multilayer structures using Raman scattering and optical absorption spectroscopies. We find that interdiffusion coefficient D* can be described by D* = Do exp (−ED/kT) with ED = 3.3 eV and Do = 104 cm2s−1. The high value of ED suggests that the diffusion process is substitutional.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, B., Tiedje, T., Liang, K. S., Deckman, H. W., Statsiewski, H. E., Scanlon, J. C., and Eisenberger, P. M. (1984). J. Non-Cryst. Solids, 66, 351 Google Scholar
Cody, G. D. (1984). In “Semiconductors and Semi-metals,” Vol 21B, (Academic Press).Google Scholar
Connell, G. A. N., Temkin, R. J., and Paul, W. (1973). Adv. in Phys., 22, 643 Google Scholar
Cook, H. E., and Hilliard, J. E. (1969). J. Appl. Phys., 40, 2191 Google Scholar
Deckman, H. W., Dunsmuir, J., andAbeles, B. (1984). Appl. Phys. Lett., 46, 171 Google Scholar
DuMond, J. and Youtz, J. P. (1940). J. Appl. Phys., 11, 357 Google Scholar
Elliman, R. G., Gibson, J. M., Jacobson, D. C., Poate, J. M., and Williams, J. S. (1985). Appl. Phys. Lett., 46, 478 Google Scholar
Frank, W., Gosele, V. Mehrer, H., and Seeger, A. (1984). J. Non- Cryst. Solids, 66, 63 Google Scholar
Janot, Chr., Roth, M., Marchal, G., Piecuch, M., and Bruson, A. (1986). J. Non-Cryst. Solids, 81, 41 CrossRefGoogle Scholar
Lannin, J. S. (1974). In “Amorphous and Liquid Semiconductors,” Ed. by Stuke, J. and Brenig, W. (Taylor and Francis, London), p. 1245.Google Scholar
McVay, G. L. and DuCharme, A. R. (1974). Phys. Rev. B, 9, 627 Google Scholar
Persans, P. D., Ruppert, A. F., Chan, S. S., and Cody, G. D. (1984). Solid State Commun., 51, 203 Google Scholar
Persans, P. D., Abeles, B., Scanlon, J., and Stasiewski, H. (1985). In “Proc. of the Seventeenth Int'l. Conf. on Phys. of Semiconductors,” Ed. Chadi, D. J. and Harrison, W. A. (Springer, New York), p. 499.Google Scholar
Persans, P. D., Ruppert, A. F., Abeles, B., and Tiedje, T. (1985a). Phys. Rev. B, 32, 5558; J. de Physique, Coll. C8, 46, 597.Google Scholar
Prokes, S. M. and Spaepen, F. (1985). Appl. Phys. Lett., 47, 234.Google Scholar
Rosenblum, M. P., Spaepen, F., and Turnbull, D. (1980). Appl. Phys. Lett., 37, 184 Google Scholar
Rothman, S. J. (1984). In “Diffusion in Crystalline Solids,” Ed. Murch, G. E., and Nowick, A. S, (Academic Press, Orlando), p. 1 Google Scholar
Wemple., S. H. DiDomenico, M. (1971). Phys. Rev. B, 3, 1338 CrossRefGoogle Scholar