No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
To gain fundamental insights into metal oxidation, the dynamically formed Cu/Cu2O interface was investigated by cross-sectional TEM (Transmission Electron Microscopy) methods. Copper (001) films were oxidized in oxygen within a UHV chamber to create Cu2O islands that formed epitaxially with respect to the Cu film. The cross-sectional Cu2O/Cu TEM sample was prepared by dual beam (DB) focused ion beam (FIB) instrument and the interface was probed by high-resolution TEM (HREM) and electron energy loss spectrum (EELS). It is found that Cu2O {110} layer distance significantly decreases from the interface area to the bulk Cu2O region, which is about 3∼4 unit cell thickness in Cu2O side; while the {100Cu2O layer distance increases with increasing distance from the interface region. The chemical Cu/Cu2O interface thickness has been measured with EELS analysis, which is about 2nm where the oxidation state of Cu gradually changes from Cu0 to Cu+1. This transition region indicates the area where Cu/Cu2O interface exists and suggests the existence of metastable Cu oxides. The Cu2O island growth mechanism of predominantly anion interfacial diffusion at the initial stage oxidation has been proposed.