Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-05T10:44:15.274Z Has data issue: false hasContentIssue false

Anomalous Magnetoresistance Effect in Strained Manganite Ultrathin Films

Published online by Cambridge University Press:  10 February 2011

Qi Li
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
H. S. Wang
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
Y. F. Hu
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
E. Wertz
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Magnetotransport properties of strained epitaxial Pr2/3Sr1/3MnOz (PSMO) ultrathin films have been studied. The strains are controlled by growing PSMO films on different lattice-mismatched substrates which impose biaxial compressive-, tensile-, and very little strain in the films, respectively. Distinctive magnetoresistance effects in low magnetic field (LFMR) have been observed in films with different types of strain. The films with compressive strain show very large negative LFMR (> 1000 % at 2500 Oe) and significant magnetoresistance hysteresis when a magnetic field is applied perpendicular to the film plane. In a parallel field, the LFMR is much smaller with almost no hysteresis. In contrast, the tensile-strained ultrathin films show positive LFMR at low temperatures in a perpendicular field and a negative LFMR in a parallel field. In comparison, the almost strain-free ultrathin films show very small LFMR (< 2 %) as in single crystal samples at similar temperatures and magnetic fields. In the compressive-strained samples, the large LFMR decreases rapidly with increasing film thickness. These results are interpreted based on spin dependent scattering at the domain walls and domain-rotation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Helmholt, R. von, Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
[2] Chahara, K. ichi, Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
[3] Jin, S., Tiefel, T., McCormack, M., Fastnacht, R., Ramesh, R., and Chen, L., Science 264, 413 (1994).Google Scholar
[4] Xiong, G. C., Li, Q., Ju, H. L., Mao, S. N., Senapati, L., Xi, X. X., Greene, R. L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).Google Scholar
[5] Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
[6] Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
[7] Gennes, P.-G. de, Phys. Rev. 118, 141 (1960).Google Scholar
[8] Moritomo, Y., Asamitau, A., and Tokura, Y., Phys. Rev. B 51, 16491 (1995).Google Scholar
[9] Neumeier, J. J., Hundley, M. F., Thompson, J. D., and Heffner, R. H., Phys. Rev. B 52, 7006 (1995).Google Scholar
[10] Khazeni, K., Jia, Y. X., Lu, L., Crespi, V. H., Cohen, M. L., and Zettl, A., Phys.Rev. Lett. 76, 295 (1996).Google Scholar
[11] Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914 (1996).Google Scholar
[12] Fontcuberta, J., Martinez, B., Seffar, A., Pinol, S., Garcia-Munoz, J. L., and Obradors, X., Phys. Rev. Lett. 76, 1122 (1996).Google Scholar
[13] Millis, A. J., Shraiman, B. I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996).Google Scholar
[14] Millis, A. J., Nature 392, 147 (1998).Google Scholar
[15] Millis, A. J., Darling, T., and Migliori, A., J. Appl. Phys. 83, 1588 (1998).Google Scholar
[16] Nath, T. K., Rao, R. A., Lavric, D., Eom, C. B., Wu, L., and Tsui, F., Appl. Phys. Lett. 74, 1615 (1999).Google Scholar
[17] Wang, H. S., Wertz, E., Hu, Y. F., and Li, Q., J. Appl. Phys. 2212 (1999).Google Scholar
[18] Perekalina, T. M., Lipinski, I. E., Timofeeva, V. A., and Cherkezya, S. A., Sov. Phys. Solid State 182, 1828 (1990).Google Scholar
[19] O'Donnell, J., Rzchowski, M. S., Echstein, J. N., and Bozovic, I., Appl. Phys. Lett. 72, 1 (1998).Google Scholar
[20] Suzuki, Y., Hwang, H. Y., Cheong, S.-W., and Dover, R. B. V., Appl. Phys. Lett. 71, 140 (1997).Google Scholar
[21] Wang, H. S. and Li, Q., Appl. Phys. Lett. 73, 2360 (1998).Google Scholar
[22] Wang, H. S., Li, Q., Liu, K., and Chien, C. L., Appl. Phys. Lett. 2360 (1998).Google Scholar
[23] Wu, X. W., Rzchovski, M., Wang, H. S., and Li, Q., to be published in Phys. Rev. B (2000).Google Scholar
[24] Kwon, C., Li, Q., Takeuchi, I., Warburton, C. D. P., Mao, S. N., Xi, X. X., and Venkatesan, T., Physica C 266, 75 (1996).Google Scholar
[25] Eckstein, J. N., Bozovic, I., Donnell, J. O., Onellion, M., and Rzchowski, M. S., Appl. Phys. Lett. 69, 1312 (1996).Google Scholar