Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:08:38.630Z Has data issue: false hasContentIssue false

Analysis of Band Gap Fluctuations in Cu(In,Ga)Se2 by Confocal Optical Transmission and Photoluminescence

Published online by Cambridge University Press:  01 February 2011

Levent Gutay
Affiliation:
[email protected], Carl von Ossietzky University Oldenburg, Institute of Physics, D-26111 Oldenburg, Oldenburg, 26111, Germany, +49 441 7983490, +49 441 7983201
Gottfried H. Bauer
Affiliation:
[email protected], Carl von Ossietzky University Oldenburg, Institute of Physics, Oldenburg, 26111, Germany
Get access

Abstract

We present new insights into inhomogeneities of Cu(In,Ga)Se2 absorbers by confocal optical transmission (OT) and spectrally resolved photoluminescence (PL) with lateral resolution in the one-micron regime. We carry out scans for both measurands at identical positions and observe explicit local variations of the PL- and OT-spectra. The PL-yield shows fluctuations in the sub- and few-µm regime. As shown in previous papers we extract local variations of the splitting of quasi-Fermi-levels of about 40-50meV, which limits the open circuit voltage of cells, and of the optical threshold of the absorber of some tens of meV related to the local optical band gap. Local transmission spectra similarly show lateral variations in the few-µm regime. From these spectra we calculate local absorption coefficients and absorbance functions which yield variations of the optical threshold of the absorber of 20-30meV, amounting to the same range as PL-results. Via Planck's generalized law we are able to compute theoretical PL-spectra from the resulting absorbance functions. The discrepancies between measured and calculated hypothetical PL-spectra are discussed with respect to diffusion of excess charge carriers and fluctuations of the band gap in the sub-µm-regime below the spatial resolution of the experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramanathan, K., Contreras, M., Perkins, C.L., Asher, S., Hasoon, F.S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J. and Duda, A., Prog. Photovolt.: Res. Appl. 11, 225 (2003).Google Scholar
2. Eich, D., Herber, U., Groh, U., Stahl, U., Heske, C., Marsi, M., Kiskinova, M., Riedl, W., Fink, R. and Umbach, E., Thin Solid Films 361-362, 258 (2000).Google Scholar
3. Dhere, N. G., Ghonadi, S. R., Pandit, M. B., Kadam, A. A., Jahagirdar, A. H. and Gade, V. S., Conf. Rec. 29 IEEE Photovolt. Spec. Conf., ed. Benner, J., (IEEE, Piscataway N.J., USA, 2002) p. 876.Google Scholar
4. Jiang, C. S., Noufi, R., AbuShama, J. A., Ramanathan, K., Moutinho, H. R., Pankow, J. and Al-Jassim, M. M., Appl. Phys. Lett., 84, 3477 (2004).Google Scholar
5. Fuertes, D. Marron, Sadewasser, S., Meeder, A., Glatzel, T. and Lux-Steiner, M. C., Phys. Rev. B 71, 033306 (2005).Google Scholar
6. Ott, N., Hanna, G., Rau, U., Werner, J. and Strunk, H. P., Journal Phys.: Cond. Mat., 16, 85 (2004).Google Scholar
7. Werner, J. H., Mattheis, J. and U.Rau, Thin Solid Films 480-481, 399 (2005).Google Scholar
8. Sadewasser, S., Thin Solid Films (2007), doi:10.1016/j.tsf.2006.12.134Google Scholar
9. Bothe, K., Bauer, G. H. and Unold, T., Thin Solid Films 405, 453 (2001).Google Scholar
10. Bauer, G. H., Gütay, L. and Kniese, R., Thin Solid Films 480-481, 259 (2005).Google Scholar
11. Gütay, L. and Bauer, G. H., Thin Solid Films 487, 8 (2005).Google Scholar
12. Jürgens, T., Gütay, L. and Bauer, G. H., Thin Solid Films, 511-512, 678 (2006).Google Scholar
13. Gütay, L. and Bauer, G. H., Thin Solid Films (2007), doi:10.1016/j.tsf.2006.12.164Google Scholar
14.Diplot, by Lotter, E., ZSW Stuttgart, Germany, (www.diplot.de)Google Scholar
15. Würfel, P., Physics of Solar Cells, Wiley-VCH, Weinheim (F.R.G.) (2005)Google Scholar
16. Yan, Y., Noufi, R., Jones, K. M., Ramanathan, K. and Al-Jassim, M. M., Appl. Phys. Lett. 87, 121904 (2005).Google Scholar