Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:37:20.513Z Has data issue: false hasContentIssue false

An NMR Investigation of H Cluster Configurations in A-SI:H

Published online by Cambridge University Press:  15 February 2011

J. Todd Stephen
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599–3255, [email protected]
Jonathan M. Rutland
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599–3255, [email protected]
Daxing Han
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599–3255, [email protected]
Yue Wu
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599–3255, [email protected]
Get access

Abstract

In this work the characteristics of hydrogen clusters in hot filament assisted CVD and conventional glow discharge a-Si:H films are discussed. Computer simulations of the observed free-induction decays of the 1H NMR signals indicate that the distribution of the nearest-neighbor distances between H atoms in the H clusters is quite narrow in hot filament assisted CVD a-Si:H whereas the distribution is larger in glow discharge a-Si:H. This is clear evidence of improved structural order in hot filament assisted CVD a-Si:H. The relaxed hydrogenated divacancy and multi-vacancy models reproduce the main features of the observed free-induction decay in hotwire a-Si:H very well. Computer simulations of the multiple-quantum NMR spectra indicate that a relaxed hydrogenated divacancy configuration leads to good agreement with experimental observations in device quality glow discharge a-Si:H. Results of simulations based on other H cluster configurations are also discussed. These results provide restrictions on the possible models for H clusters in a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Hydrogenated Amorphous Silicon. (Cambridge University Press, Cambridge, 1991).Google Scholar
2. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
3. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23 (1985).Google Scholar
4. Fritzsche, H., J. Non-Cryst. Solids 190, 180 (1995).Google Scholar
5. Taylor, P.C., in Semiconductors and Semimetals. vol. 21C, edited by Pankove, J. I. (Academic Press, Inc. 1984), p. 99.Google Scholar
6. Reimer, J. A. and Petrich, M. A., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific Co. Singapore, 1989), p. 3.Google Scholar
7. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Baiberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
8. Mahan, A. H. and Vanecek, M., AIP Conference Proc. 234, 195 (1991).Google Scholar
9. Kwon, D., Cohen, J. D., Nelson, B. P., and Iwaniczko, E., in Amorphous Silicon Technology edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., Matsuda, A., (Mater. Res. Soc Proc. 377, San Francisco, CA, 1995), pp. 301306.Google Scholar
10. Todd Stephen, J., Han, Daxing, Mahan, Harv, and Wu, Yue, in Amorphous Silicon Technology, edited by Hack, M., Schiff, E. A., Powell, M., Matsuda, A., and Madan, A. (Mater. Res. Soc. Proc. 420, San Francisco, CA, 1996), pp. 485490.Google Scholar
11. Wu, Y., Stephen, J. T., Han, D., Rutland, J. M., Crandall, R. A., and Mahan, A. H., “New Hydrogen Distribution in a-Si:H: An NMR Study”, Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
12. Baum, J., Gleason, K. K., Pines, A., Garroway, A. N., and Reimer, J. A., Phys. Rev. Lett. 56, 1377 (1986);Google Scholar
13. Gleason, K. K., Petrich, M. A., and Reimer, J. A., Phys. Rev. B 36, 3259 (1987).Google Scholar
14. Yang, L. and Chen, L., Appl. Phys. Lett. 63, 400 (1993).Google Scholar
15. Abragam, A., Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1989), p. 120.Google Scholar
16. Boyce, J. B. and Ready, S. E., Physica B 170, 305 (1991).Google Scholar
17. Gleason, K. K., Concepts Magn. Reson. 5, 199 (1993).Google Scholar