Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:41:15.709Z Has data issue: false hasContentIssue false

Amorphous/Crystalline Silicon Two Terminal Visibleænfrared Tunable Photodetector: Modeling and Realization

Published online by Cambridge University Press:  15 February 2011

G. De Cesare
Affiliation:
Department of Electronic Engineering, via Eudossiana, 18, 00184 Roma, (Italy)
F. Irrera
Affiliation:
Department of Electronic Engineering, via Eudossiana, 18, 00184 Roma, (Italy)
M. Tucci
Affiliation:
Department of Electronic Engineering, via Eudossiana, 18, 00184 Roma, (Italy)
Get access

Abstract

Difference in the absorption coefficient profile of the amorphous and crystalline silicon is the key idea for the realization of a new visible/infrared tunable photodetector (VIP). The device consists on a n-doped a-Si:H/intrinsic a-Si:H/p-doped a-SiC:H multilayer grown by PECVD on a p-type crystalline silicon wafer doped by a phosphourus diffusion. A grid-shaped aluminum front contact with transparent conductive oxide coating is used as window for the incident light. Tunable sensitivity in the visible and near infrared spectral range can be achieved under different values of the external voltage, with excellent spectral separation between the two quantum efficiencies peaks at 480 nm and 800 nm.

A simple analytical model taking into account the absorption profile, diffusion and drift lengths, and layer thicknesses reproduces fairly well the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, H. K. and Lee, S. K.; Appl. phys. Lett., 52 (1988) 275.Google Scholar
2. Stiebig, H., Ulrichs, C., Kulessa, T., Folsch, J., Finger, F. and Wagner, H.; J. of Non Cryst. Solids, 198200(1996)Google Scholar
3. Eberhardt, K., Neidlinger, T., Schubert, M.; IEEE Trans. Electron Devices, 42 (1995) 1763.Google Scholar
4. de Cesare, G., Irrera, F., Lemmi, F., Palma, F.; IEEE Trans. Electron Devices; 42 (1995) 835.Google Scholar
5. de Cesare, G., Irrera, F., Lemmi, F., Palma, F.; Appl. Phys. Letters; 66 (1995) 1178.Google Scholar
6. Fang, Y. K., Hwang, J. B., Cheng, K. H., Liu, C. R., Tsai, M. j., Kuo, L. C.; IEEE Trans. Electron Devices, 39 (1992) 292:Google Scholar
7. Caputo, D., de Cesare, G., Irrera, F., Palma, F.; IEEE Trans Electron Device, 43 (1996) 1351.Google Scholar
8. de Cesare, G., Galluzzi, F., Irrera, F., Lauta, D., Ferrazza, F., Tucci, M.; J. of Non-Crystalline Solids, 198–200(1996)1189.Google Scholar
9. Rubinelli, F., Albornoz, S. and Buitrago, R., Solids-St. Electron., 28 (1985) 741.Google Scholar
10. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y., Jpn. J. Appl. Phys, 31 (1992) 3518.Google Scholar
11. de Cesare, G., Galluzzi, F., Guattari, G., Leo, G., Vincenzoni, R., Bemporad, E.; Diam. and Rel. Mat, 2 (1993) 773.Google Scholar
12. Crandall, R. S., J. Appl. Phys., 53 (1982) 3350.Google Scholar