Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:50:50.903Z Has data issue: false hasContentIssue false

Aerosol-Assisted Chemical Vapor Deposition (AACVD) of Binary Alloy Films: Studies of Film Composition

Published online by Cambridge University Press:  15 February 2011

Chongying Xu
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
Mark J. Hampden-Smith
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
Toivo T. Kodas
Affiliation:
Department of Chemical Engineering, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

The chemical vapor deposition (CVD) of Cu-Ag and Cu-Pd alloys using aerosol precursor delivery over a range of preheating temperatures, 70∼80 °C and substrate temperatures, 250∼300 °C is described. The precursors used include Cu(hfac)2, (hfac)Ag(Set2) and Pd(hfac)2 dissolved in toluene and 10% H2 in Ar as carrier gas. The films were characterized by SEM, EDS and X-ray diffraction (XRD). The X-ray diffraction results showed the Cu/Ag films were composed of α-and β-phases of Cu-Ag alloys, the Cu/Pd films were Cu-Pd alloy, solid solutions, under these conditions. Compositional variation studies in Cu-Pd and Pd-Ag alloy systems were also conducted by mixing Cu(hfac)2/Pd(hfac)2 and (hfac)Ag(SEt2)/Pd(hfac)2 in toluene solution in different ratios. The films were characterized by X-ray diffraction and the results showed the composition of films was affected by the solution stoichiometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jaraith, R.; Jain, A.; Tolles, R. D.; Hampden-Smith, M. J.; Kodas, T. T., in The Chemistry f Metal CVD: edited by Kodas, T. T. and Hampden-Smith, M. J., (VCH Publishers, Weinhein, 1994.) ch. 1., pp. 1.Google Scholar
2. Shu, J.; Grandjean, B. P. A.; Van Neste, A.; Kaliaguine, S., Can. J. Chem. Eng., 69, 1036–60 (1991).10.1002/cjce.5450690503Google Scholar
3. Kodas, T. T.; Hampden-Smith, M. J., in The Chemistry of Metal CVD. edited by Kodas, T. T. and Hampden-Smith, M. J., (VCH Publishers, Weinhein, 1994.) ch.9., pp. 429.10.1002/9783527615858.ch9Google Scholar
4. Roger, C.; Corbitt, T. S.; Hampden-Smith, M. J; Kodas, T. T., Appl. Phys. Lett., 65, 1021 (1994).Google Scholar
5. Xu, C.; Hampden-Smith, M. J.; Kodas, T. T., Angew. Chem., Adv. Mater., 6, 746 (1994).Google Scholar
6. Roger, C.; Corbitt, T.; Xu, C.; Zeng, D.; Powell, Q.; Chandler, C. D.; Nyman, M.; Hampden-Smith, M. J.; Kodas, T. T., Nanostructured Materials, 4(5), 529535 (1994).10.1016/0965-9773(94)90060-4Google Scholar
7. Xu, C.; Corbitt, T.; Hampden-Smith, M. J.; Kodas, T. T.; Duesler, E. N., J. Chem. Soc., Dalton Trans., 2841 (1994).Google Scholar
8. Maverick, A.; Griffin, G. L., in The Chemistry of Metal CVD. edited by Kodas, T. T. and Hampden-Smith, M. J., (VCH Publishers, Weinhein, 1994.) ch.4., pp. 175.Google Scholar
9. Temple, D.; Reisman, A., J. Electrochem. Soc., 136, 3525 (1989).10.1149/1.2096498Google Scholar
10. Lin, W.; Warren, T. H.; Nuzzo, R. G.; Girolami, G. S., J. Am. Chem. Soc., 115, 11644 (1993).10.1021/ja00077a092Google Scholar