Published online by Cambridge University Press: 15 February 2011
Supercritical CO2 (sc-CO2) was first time utilized to make germanium (Ge) nanocrystals by thermolysis of diphenylgermane (DPG) or tetraethylgermane (TEG) with octanol as capping ligand at 500°C and 27.6 MPa. A new approach to prepare Ge nanocrystals of high chemical yield by reduction of GeI2 with LiAlH4 in trioctylphosphine (TOP) at 300°C is also presented. In both cases, Ge nanoparticles with high crystallinity were observed with high resolution transmission electron microscopy (HRTEM), and the presence of Ge was confirmed by X-ray diffraction (XRD) pattern. Compared to the supercritical organic solvents investigated in the previous study to make Ge nanoparticles, the reaction in sc-CO2 produced much less organic contaminants and made the removal of by-products and cleaning of the nanocrystals much easier. While Ge nanoparticles were synthesized in sc-CO2 with DPG and octanol, bulk Ge instead of nanoparticles was obtained without the presence of CO2 at the same concentration of DPG and octanol. High chemical yield of up to 75% was achieved for the Ge nanoparticles made from GeI2 with TOP, and only minimal cleaning is required to obtain Ge nanocrystals with high purity.