Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T14:11:04.334Z Has data issue: false hasContentIssue false

Water-Soluble Paracyclophane Fluorophores with Large Two-Photon Action Cross Sections

Published online by Cambridge University Press:  01 February 2011

Han Young Woo
Affiliation:
Mitsubishi Chemical Center for Advanced Materials, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, USA
Dmitry Korystov
Affiliation:
Mitsubishi Chemical Center for Advanced Materials, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, USA
Alexander Mikhailovsky
Affiliation:
Mitsubishi Chemical Center for Advanced Materials, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, USA
Guillermo C. Bazan
Affiliation:
Mitsubishi Chemical Center for Advanced Materials, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, USA
Get access

Abstract

A series of tetradonor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were designed, synthesized and characterized. Different substituents were chosen to modulate the conjugation and the donor strength and to allow the molecules to be neutral (N series, organic-soluble) or charged (C series, water-soluble). The overall set of compounds series allows us to examine the correlation among the solvent polarity, donor ability of the substituents, and TPA action cross section (ηδd, where δ is the TPA cross section and η is the quantum yield). In water, a significant drop of both δ and η is observed, approximately one-third relative to those in toluene. Weaker donors and/or weaker acceptors with enhanced conjugation are a better choice due to a minimized quenching related to strong charge transfer (CT) upon excitation. One thus needs to fine-tune the magnitude of CT and find an optimal balance among CT,δ and η.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yuste, R. and Denk, W., Nature 375, 682 (1995).Google Scholar
2 Pond, S. J. K., Tsutsumi, O., Rumi, M., Kwon, O., Zojer, E., Brédas, J.-L., Marder, S. R. and Perry, J. W., J. Am. Chem. Soc. 126, 9291 (2004).Google Scholar
3 Albota, M., Beljonne, D., Brédas, J.-L., Ehrlich, J. E., Fu, J.-Y., Heikal, A. A., Hess, S. E., Kogej, T., Levin, M. D., Marder, S. R., McCord-Maughon, D., Perry, J. W., Röckel, H., Rumi, M., Subramaniam, G., Webb, W. W., Wu, X.-L. and Xu, C., Science 281, 1653 (1998).Google Scholar
4(a) Strehmel, B., Sarker, A. M., Malpert, J. H., Strehmel, V., Seifert, H. and Neckers, D. C., J. Am. Chem. Soc. 121, 1226 (1999).Google Scholar
(b) Jager, W. F., Volkers, A. A. and Neckers, D. C., Macromolecules 28, 8153 (1995).Google Scholar
5 Bartholomew, G. P. and Bazan, G. C., J. Am. Chem. Soc. 124, 5183 (2002).Google Scholar
6 Xu, C. and Webb, W. W., J. Opt. Soc. Am. B 13, 481 (1996).Google Scholar
7 Bartholomew, G. P., Rumi, M., Pond, S. J. K., Perry, J. W., Tretiak, S. and Bazan, G. C., J. Am. Chem. Soc. 126, 11529 (2004).Google Scholar
8 Halpern, A. M., Ruggles, C. J. and Zhang, X., J. Am. Chem. Soc. 109, 3748 (1987).Google Scholar
9 Luo, Y., Norman, P., Macak, P. and Ågren, H., J. Phys. Chem. A 104, 4718 (2000).Google Scholar
10 Zalesny, R., Bartkowiak, W., Styrcz, S. and Leszczynski, J., J. Phys. Chem. A 106, 4032 (2002).Google Scholar
11(a) Kogej, T., Beljonne, D., Meyers, F., Perry, J. W., Marder, S. R. and Brédas, J.-L., Chem. Phys. Lett. 298, 1 (1998).Google Scholar
(b) Wang, C.-K., Zhao, K., Su, Y., Ren, Y., Zhao, X. and Luo, Y., J. Chem. Phys. 119, 1208 (2003).Google Scholar