Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:38:16.510Z Has data issue: false hasContentIssue false

Ulm-12 and Ulm-19: The Hydrated and Anhydrous Forms of the First Synthetic Oxyfluorinated Iron Phosphate with an Open Structure

Published online by Cambridge University Press:  10 February 2011

Myriam Cavellec
Affiliation:
Laboratoire des Fluorures URA CNRS 449, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, F- 72017 Le Mans (France)
Didier Riou
Affiliation:
Laboratoire des Fluorures URA CNRS 449, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, F- 72017 Le Mans (France)
Jean Marc Grenèche
Affiliation:
Laboratoire des Fluorures URA CNRS 449, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, F- 72017 Le Mans (France)
Gérard Férey
Affiliation:
Laboratoire des Fluorures URA CNRS 449, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, F- 72017 Le Mans (France)
Get access

Abstract

ULM-19 or [Fe4(PO4)4F2], [C6H14N2], was obtained in a monocrystalline form from the dehydration of single crystals of ULM-12, or [Fe4(PO4)4F2(H2O)3], [C6H14N2] at 260°C. It is monoclinic (S.G. P21/n) with a = 10.009(7), b = 12.235(8), c = 17.28(2) Å, β = 106.04(5)°, V = 2034(3) Å3, Z = 4. Its structure, which can be described from the corner sharing of hexameric Fe3P3 and dimeric FeP units, directly derives from that of ULM- 12 by the loss, on three of the four Fe(III) polyhedral sites of the structure of ULM-12, of the terminal water molecules. This induces drastic changes in the coordination polyhedra of Fe(III): three octahedra and one square pyramid in ULM-12, and one octahedron, one square pyramid, one trigonal bipyramid and one tetrahedron in ULM-19. These evolutions were confirmed and characterized by in situ Mössbauer spectrometry measurements using a cryofurnace. The loss of water opens 6-ring channels beside the 12-ring tunnels already existing in ULM-12.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wilson, S.T., Lock, B.M., Messina, C.A., Cannan, T.R. and Flanigen, E.M., J. Am. Chem. Soc, 104, p. 1146 (1982).Google Scholar
[2] Guth, J.L., Kessler, H. and Wey, R., Stud. Surf. Sci. Catal. 28, p. 121 (1986).Google Scholar
[3] Estermann, M., McCusker, L.B., Berlocher, C., Merrouche, A. and Kessler, H., Nature 352, p. 320 (1991).Google Scholar
[4] Férey, G., J. Fluorine Chem. 1995, 72, 187 Google Scholar
[5] Riou, D., Férey, G., J. Solid State Chem. 111, p. 422 (1994).Google Scholar
[6] Cavellec, M., Riou, D., Férey, G., J. Solid State Chem. 112, p. 441 (1994).Google Scholar
[7] Cavellec, M., Riou, D., Férey, G., Eur.J. Solid State Inorg. Chem. 31, p. 583 (1994).Google Scholar
[8] Cavellec, M., Riou, D., Ninclaus, C., Grenèche, J.M., Férey, G., Zeolites 1996, in press.Google Scholar
[9] Cavellec, M., Riou, D., Grenèche, J.M., Férey, G., J. Mag. Magn. Mat. 1996, in pressGoogle Scholar
[10] Cavellec, M., Riou, D., Grenèche, J.M., Férey, G., Angew. Chem. 1996, submitted.Google Scholar
[11] Teillet, J., Varret, F., Program MOSFIT (Université du Maine), unpublishedGoogle Scholar
[12] Shannon, R.D., Acta Crystallogr. A32, p. 751 (1976)Google Scholar