Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T09:09:36.819Z Has data issue: false hasContentIssue false

Tuning lattice thermal conductance in ultra-scaled hollow SiNW: Role of porosity size, density and distribution

Published online by Cambridge University Press:  10 October 2011

Abhijeet Pau*
Affiliation:
School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, 47907, USA.
Kai Miao
Affiliation:
School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, 47907, USA.
Mathieu Luisier
Affiliation:
School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, 47907, USA.
Gerhard Klimeck
Affiliation:
School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, 47907, USA.
Get access

Abstract

Porous crystalline Si nanowires (PC-SiNW) represent an attractive solution for enhancing the thermoelectric efficiency (ZT) of SiNWs by reducing the lattice thermal conductance (κl). A modified valence force field (MVFF) phonon model along with Landauer’s approach is used to analyze the ballistic κl in PC-SiNWs. A systematic study focusing on the influence of pore size, density, and distribution on the ballistic κl of PC-SiNWs is presented. The model predicts a maximum reduction of ∼19%, ∼23% and ∼30% for 1, 2 and 3 pores, respectively with a constant removal of ∼12% of the atoms in all the cases. The model also predicts a higher reduction of the ballistic κl as the pore separation increases, in the case of 2, 3 and 4 pores, for the same percentage of atoms removed (∼12%) in all the cases. Thus, the presence of a high number of small, well-separated pores suppress κl strongly. This reduction in ballistic κl, in the coherent limit, is attributed to the reduction of the total number of phonon modes and smaller participation of phonon modes (in κl) with increasing number of pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P.,Nature (London) 451, 163, (2008).Google Scholar
[2] Gesele, G., Linsmeier, J., Drach, V., Fricke, J., and Arens-Fischer, R., J. Phys.D: Appl. Phys. 30, 2911 (1997).Google Scholar
[3] Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., and Heath, J. R., Nat. Nanotechnol. 5, 718 (2010).Google Scholar
[4] Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., Serrano, J. R., Phinney, L. M., and El-Kady Nano, I. Lett., 11(1), pp 107112,(2011)Google Scholar
[5] Lee, J.-H., Galli, G. A., and Grossman, J. C., Nano Lett. 8, 3750 (2008).Google Scholar
[6] Paul, A and Klimeck, G., Appl. Phys. Lett. 98, 083106; doi:10.1063/1.3556648, 3 pages, (2011).Google Scholar
[7] Cao, Y., He, J., and Sun, J., Mater. Lett. 63, 148 (2009).Google Scholar
[8] Fan, H. J., Knez, M., Scholz, R., Nielsch, K., Pippel, E., Hesse, D., Zacharias, M., and Gosele, U., Nature Mater. 5, 627 (2006).Google Scholar
[9] Srinivasan, R., Jayachandran, M., and Ramachandran, K., Cryst. Res. Technol. 42, 266 (2007).Google Scholar
[10] Voon, L. C. L. Y., Zhang, Y., Lassen, B., Willatzen, M., Xiong, Q., and Eklund, P. C., J. Nanosci. Nanotech. 8, 1(2008).Google Scholar
[11] Landauer, R., IBM J. Res. Dev. 1, 223 (1957).Google Scholar
[12] Palaria, A., Klimeck, G., and Strachan, A., Phys. Rev. B 78, 205315 (2008).Google Scholar
[13] Peelaers, H., Partoens, B., and Peeters, F. M., Nano Lett. 9, 107 (2009).Google Scholar
[14] Sui, Z. and Herman, I. P., Phys. Rev. B 48, 17938 1993.Google Scholar
[15] Paul, A., Luisier, M., and Klimeck, G., J. Comput. Electron. 93, 160 (2010).Google Scholar
[16] Paul, A., Luisier, M., and Klimeck, G., 14th Int. Workshop on Comp. Elect. (IWCE), pp. 14, 2010.Google Scholar
[17] Mingo, N., Yang, L., Li, D., and Majumdar, A., Nano Lett. 3, 1713 (2003).Google Scholar
[18] Chen, J., Zhang, G., and Li, B., Nano Lett. 10, 3978 (2010).Google Scholar
[19] Bodapati, A., Schelling, P. K., Phillpot, S. R., and Keblinski, P., Phys. Rev. B 74, 245207 (2006).Google Scholar