Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:06:34.813Z Has data issue: false hasContentIssue false

Transport Calculations in Molecular Devices from First Principles

Published online by Cambridge University Press:  21 March 2011

M. Di Ventr
Affiliation:
Department of Physics and Astronomy, Vanerbilt University, A Shville, TN 37235
D. Langa
Affiliation:
Ibm Researchd Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
S.T. Pantelid
Affiliation:
Department of Physics and Astronomy, Vanerbilt University, A Shville, TN 37235
Get access

Abstract

For molecular electronics, Boltzmann's equation is no longer valid for simulating device characteristics. We resent the first fully ab initio simulation of a molecular device that has already been studied ex erimentally, namely a benzene-1,4-dithiolate molecule between gold electrodes. The theoretical I-V curve has the same overall sha e as the ex erimental curve —reflecting the electronic structure of the molecule in the resence of the electric field — but the absolute value of the current is very sensitive to contact chemistry and geometry. In articular the resence ol a single gold atom between the molecule and the electrode surface reduces the conductance by more than an order of magnitude. Re lacement of the single gold atom by an aluminum atom, whose p orbitals cou le more effectively to the molecule's T orbitals, increases the conductance by about an order of magnitude. We have also studied the olarization effects induced by a third terminal (gate) on the I-V characteristics of the above device. In articular, we have found that current gain due to the gate bias can be achieved at reasonable gate fields. Finally the effect of current-induced forces on the device will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M., Science 278, 252 (1997).Google Scholar
2. Klein, D.L., McEuen, P.L., Katari, J.E. Bowen, Roth, R., and Alivisatos, A.P., Appl. Phys. Lett. 68, 2574 (1996).Google Scholar
3. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C., Nature 391, 59 (1998); S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998); S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997).Google Scholar
4. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
5. Fischetti, M.V., Phys. Rev. Lett. 53, 1755 (1984); M.V. Fischetti and E. Laux, Phys. Rev. B 38, 9721 (1998)Google Scholar
6. Delaney, P. and Ventra, M. Di, Appl. Phys. Lett. (in press); P. Delaney, M. Di Ventra, and S.T. Pantelides, Appl. Phys. Lett. (in press).Google Scholar
7. Davis, W.B., Svec, W.Z., Ratner, M.A., and Wasielewski, M.R., Nature 396, 60 (1998).Google Scholar
8. Samanta, M.P., Tian, W., Datta, S., Henderson, J.I., and Kubiak, C.P., Phys. Rev. B 53, R7626 (1996); S. Datta, D.B. Janes, R.P. Andres, C.P. Kubiak, and R.G. Reifenberger, Semicond.Sci. Technol. 13, 1347 (1998).Google Scholar
9. Gimzewski, J.K. and Joachim, C., Science 283, 1683 (1999).Google Scholar
10. Ventra, M. Di., Pantelides, S.T., and Lang, N.D., Phys. Rev. Lett. (in press).Google Scholar
11. See, e.g., Lang, N.D., in Solid State Physics, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic, NY, 1973), Vol.28, p. 225.Google Scholar
12. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965); D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
13. Lang, N.D., Phys. Rev. B. 52, 5335 (1995); ibid. 49, 2067 (1994); N.D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515 (1998).Google Scholar
14. Ventra, M. Di and Pantelides, S.T., Phys. Rev. B (submited).Google Scholar
15. Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., and Nuzzo, R.G., J. Am. Chem. Soc. 113, 7152 (1991).Google Scholar
16. See, e.g., Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
17. Bianchi, M. Sassoli de and Ventra, M. Di, J. Math. Phys. 36, 1753 (1995).Google Scholar
18. Anderson, P.W., Thouless, D.J., Abrahams, E., and Fisher, D.S., Phys. Rev. B 22, 3519 (1980).Google Scholar