Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:47:53.783Z Has data issue: false hasContentIssue false

Time-Resolved Photoluminescence from nm-Sized Silicon Crystallites In SiO2

Published online by Cambridge University Press:  10 February 2011

J. Linnros
Affiliation:
Department of Electronics, Royal Institute of Technology, Electrum 229, S-164 40 Kista-Stockholm, Sweden, [email protected]
A. Galeckas
Affiliation:
Permanent address: Inst. of Mat. Res. and Appl. Sci., Vilnius University, 2054 Vilnius, Lithuania
A. Pareaud
Affiliation:
Department of Electronics, Royal Institute of Technology, Electrum 229, S-164 40 Kista-Stockholm, Sweden, [email protected]
N. Lalic
Affiliation:
Department of Electronics, Royal Institute of Technology, Electrum 229, S-164 40 Kista-Stockholm, Sweden, [email protected]
V. Grivickas
Affiliation:
Permanent address: Inst. of Mat. Res. and Appl. Sci., Vilnius University, 2054 Vilnius, Lithuania
L. Hultman
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Link6ping, Sweden
Get access

Abstract

Time resolved photoluminescence (PL) decays have been measured for Si nanocrystals embedded in silicon dioxide. The nanocrystals were formed by Si implantation followed by thermal annealing at 800 – 1200 °C. The observed PL peaked in the wavelength range 640 – 850 nm and the PL decay exhibited a stretched exponential lineshape, characterized by a relatively large time constant. A nonlinear dose dependence of the PL yield and an observed redshifting for increasing doses and/or higher annealing temperatures is discussed in terms of a nucleation and growth mechanism for the nanocrystals. Finally, we argue that Auger recombination is effective at high excitation densities explaining a wavelength dependent saturation of the PL intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review see: Cullis, A.G., Canham, L.T. and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. For recent articles see Mat. Res. Soc. Symp. Proc. 452 (1997).Google Scholar
4. DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A., and Brorson, S.D., J. Appl. Phys. 56, 401 (1984).Google Scholar
5. Zhang, Q., Bayliss, S.C., and Hutt, D.A., Appl. Phys. Lett. 66, 1977 (1995).Google Scholar
6. Kanemitsu, Y., Phys. Rev. B. 53, 13515 (1996).Google Scholar
7. Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G.F., Meda, L., Grilli, E., and Guzzi, M., Appl. Phys. Lett. 66, 851 (1995).Google Scholar
8. Cheong, H.M., Paul, W., Withrow, S.P., Zhu, J.G., Budai, J.D., White, C.W. and Hembree, D.M., Appl. Phys. Lett. 68, 87 (1996).Google Scholar
9. Komoda, T., Kelly, J.P., Nejim, A., Homewood, K.P., Hemment, P.L.F., and Sealy, B.J., Mat. Res. Soc. Symp. Proc. 358, 163 (1995).Google Scholar
10. Ghislotti, G., Nielsen, B., Asoka-Kumar, P., Lynn, K.G., Gambhir, A., Mauro, L.F. Di, Bottani, C.E., J. Appl. Phys. 79, 8660 (1996).Google Scholar
11. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A., Appl. Phys. Lett. 69, 2033 (1996).Google Scholar
12. Liao, L.-S., Bao, X.-M., Zheng, X.-Q., Li, N.-S., and Min, N.-B., Appl. Phys. Lett. 68, 850 (1996).Google Scholar
13. Linnros, J., Galeckas, A., Lalic, N., and Grivickas, V., Thin Solid Films 297, 167 (1997).Google Scholar
14. Guha, S., Pace, M.D., Dunn, D.N., and Singer, I.L., Appl. Phys. Lett. 70, 1207 (1997).Google Scholar
15. Song, H.Z. and Bao, X.M., Phys. Rev. B 55, 6988 (1997).Google Scholar
16. Pavesi, L. and Ceschini, M., Phys. Rev. B48, 17 625 (1993).Google Scholar
17. Mauckner, G., Thonke, K., Baier, T., Walter, T., and Sauer, R., J. Appl. Phys. 75, 4167 (1994).Google Scholar
18. Ventura, P.J., Carmo, M.C. do, and O'Donnell, K.P., J. Appl. Phys. 77, 323 (1995).Google Scholar
19. Roman, H.E. and Pavesi, L., J. of Phys. Condens. Matter 8, 5161 (1996).Google Scholar
20. Pavesi, L., J. Appl. Phys. 80, 1 (1996).Google Scholar
21. Mihalcescu, I., Vial, J.C. and Romestain, R., J. Appl. Phys. 80, 2404 (1996).Google Scholar