Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:42:22.487Z Has data issue: false hasContentIssue false

Thin-Film Reactive Interdiffusion in The TI-AL System

Published online by Cambridge University Press:  21 February 2011

P. Maugis
Affiliation:
Laboratoire de Physique des Solides, Université Paris XI, 91405 Orsay, France
G. Blaise
Affiliation:
Laboratoire de Physique des Solides, Université Paris XI, 91405 Orsay, France
J. Philibert
Affiliation:
Laboratoire de Metallurgie Structurale, Université Paris XI, 91405 Orsay, France
Get access

Abstract

We have studied the thermodynamics and kinetics of growth of Al-Ti phases in thin-film interdiffusion couples, A lOOnm thick aluminum layer is vapor-deposited on a poly- or single-crystal titanium substrate, previously etched by ion bombardment. The sample is then annealed during a time ranging from a few minutes to a few hours, at temperatures from 300 to 600°C. The Al atomic fraction vs depth is determined using a sputtering technique, associated with thermo-ionization mass spectrometry (STIMS). At low temperature (300–450°C), titanium diffuses along the grain boundaries of the micro-crystalline aluminum layer, to form an Al-rich phase. At higher temperature (450–500°C), the T1AI3 phase grows rapidly up to the surface. Above 460°C, an intermediate Ti-72at/Al phase grows between TiAl3 and Ti‥ At 600°C, the aluminum layer becomes morphologically unstable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Taranto, R.J. and Blaise, G., Acta Metall. 37, 2305 (1989)Google Scholar
[2] d'Heurle, F.M. and Gas, P., J. Mater. Res. 1, 205 (1986)CrossRefGoogle Scholar
[3] Rubaschewski, O. and Dench, W.A., Acta Metall. 3, 339(1955)Google Scholar
[4] Rubaschewski, O. and Heymer, G., Trans. Faraday Soc. 56, 473 (1960)Google Scholar
[5] Desai, P.D., J. Phys. Chem. Ref. Data 16, 109 (1987)CrossRefGoogle Scholar
[6] d'Heurle, F.M., J. Vac. Sci. Technol. A7, 1467 (1989)Google Scholar
[7] Howard, J.R., Lever, R.F., Smith, P.J. and Ho, P.S., J. Vac. Sci. Tech. 13, 68 (1973)Google Scholar
[8] Loiseau, A. and Vannuffel, C., Phys. Stat. Sol. 107, 655 (1988)Google Scholar
[9] Van Loo, F.J.J. and Rieck, G.D., Acta Metall. 21, 61 (1973)Google Scholar
[10] Wittmer, M., LeGoues, F. and Huang, H.-C.W., J. Electrochem. Soc. 132, 1450 (1985)Google Scholar
[11] Rrafcsik, I., Gyulai, J., Palmstrom, C.J. and Mayer, J.W., Appl. Phys. Lett. 12, 1015 (1983)CrossRefGoogle Scholar
[12] Tardy, J., Tu, R.H., Phys. Rev. B 12, 2070 (1985)Google Scholar
[13] Zhao, X.-A., So, F.C.T. and Nicolet, M.-A., J. Appl. Phys. 63, 2600 (1988)Google Scholar
[14] Colgan, E.G., Mater. Sci. Reports 5, 1 (1990)CrossRefGoogle Scholar