Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T08:59:43.687Z Has data issue: false hasContentIssue false

Theory of the Knight Shift and Spin-Lattice Relaxation Rate in Pu-115

Published online by Cambridge University Press:  26 February 2011

Yunkyu Bang
Affiliation:
[email protected], Chonnam National University, Department of Physics, Korea, Democratic People's Republic of
Matthias J. Graf
Affiliation:
[email protected], Los Alamos National Laboratory, Theoretical Division, United States
Nicholas J. Curro
Affiliation:
[email protected], Los Alamos National Laboratory, MST Division, United States
Alexander J. Balatsky
Affiliation:
[email protected], Los Alamos National Laboratory, Theoretical Division, United States
Get access

Abstract

We calculated the Knight shift and spin-lattice relaxation rates of Pu-115 compounds assuming d-wave superconductivity in the presence of strong impurity scattering. We discuss the implications for recent measurements of the spin-lattice relaxation rate in the Pu-115 compound PuRhGa5 by Sakai and coworkers [J. Phys. Soc. Jpn. 74, 1710 (2005)] and present a prediction for the corresponding Knight shift. In addition, we noticed a significant round-off of the spin-lattice relaxation rate 1/T1 just above the superconducting transition temperature that is not observed in the sister compound PuCoGa5. It appears that in PuRhGa5 superconductivity is mediated by spin fluctuations, too. This provides additional support to the scenario of superconducting pairing mediated by spin fluctuations in the Pu-115 compounds similar to the Ce-115 compounds and the high-temperature copper-oxide superconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sarrao, J. L., Morales, L. A., Thompson, J. D., Scott, B. L., Stewart, G. R., Wastin, F., Rebizant, J., Boulet, P., Colineau, E., and Lander, G. H., Nature (London) 420, 297 (2002).Google Scholar
[2] Wastin, F., Boulet, P., Rebizant, J., Collineau, E., and Lander, G. H., J. Phys.: Condens. Matter 15, S2279 (2003).Google Scholar
[3] Bang, Y., Balatsky, A. V., Wastin, F., and Thompson, J. D., Phys. Rev. B 70, 104512 (2004).Google Scholar
[4] Curro, N. J., Caldwell, T., Bauer, E. D., Morales, L. A., Graf, M. J., Bang, Y., Balatsky, A. V., Thompson, J. D., and Sarrao, J. L., Nature (London) 434, 622 (2005).Google Scholar
[5] Bauer, E. D., Thompson, J. D., Sarrao, J. L., Morales, L. A., Wastin, F., Rebizant, J., Griveau, J. C., Javorsky, P., Boulet, P., Colineau, E., Lander, G. H., and Stewart, G. R., Phys. Rev. Lett. 93, 147005 (2004).Google Scholar
[6] Sakai, H., Tokunaga, Y., Fujimoto, T., Kambe, S., Walstedt, R. E., Yasuoka, H., Aoki, D., Homma, Y., Yamamoto, E., Nakamura, A., Shiokawa, Y., Nakajima, K., Arai, Y., Matsuda, T. D., Haga, Y., and ōnuki, Y., J. Phys. Soc. Jpn. 74, 1710 (2005).Google Scholar
[7] Bang, Y., Graf, M. J., and Balatsky, A. V., Phys. Rev. B 68, 212504 (2003).Google Scholar
[8] Bang, Y., Graf, M. J., Balatsky, A. V., and Thompson, J. D., Phys. Rev. B 69, 014505 (2004).Google Scholar
[9] Hirschfeld, P. J., Vollhardt, D., and Wölfle, P., Solid State Commun. 59, 111 (1986).Google Scholar
[10] Schmitt-Rink, S., Miyake, K., and Varma, C. M., Phys. Rev. Lett. 57, 2575 (1986).Google Scholar
[11] Monien, H., Scharnberg, K., and Walker, D., Solid State Commun. 63, 263 (1987).Google Scholar
[12] Bang, Y., Martin, I., and Balatsky, A.V., Phys. Rev. B 66, 224501 (2002).Google Scholar
[13] Hirschfeld, P. J., Wölfle, P., and Einzel, D., Phys. Rev. B 37, 83 (1988).Google Scholar