Article contents
Theoretical Modeling of Chemical Vapor Deposition of Silicon Carbide in a Hot Wall Reactor
Published online by Cambridge University Press: 15 February 2011
Abstract
A theoretical model, which describes the coupled hydrodynamics, mass transport and chemical reaction, has been developed to simulate chemical vapor deposition (CVD) of silicon carbide (SiC) from gas mixture of methyltrichlorosilane (MTS), hydrogen and argon in a hot wall reactor. In the model analysis, the governing equations were developed in the cylindrical coordinate, and solved numerically by using a finite difference method. A kinetic rate expression of CVD-SiC deposition from the gas mixture was obtained from this study. The deposition rate has an Arrhenius-type dependence on the deposition temperature and is first order with respect to the MTS concentration. Estimated activation energy is 254 kJ/mol. Predicted deposition rate profiles by the model analysis incorporated with the obtained kinetic rate expression showed excellent agreement with experimental data over a variety of applied deposition conditions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
- 1
- Cited by