Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T05:17:57.439Z Has data issue: false hasContentIssue false

Tetrahedra from Aryleneethenylenes – From small Molecules to Luminescent Glasses

Published online by Cambridge University Press:  17 March 2011

H. Detert
Affiliation:
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz Duesbergweg 10 – 14, 55099 Mainz, Germany
O. Sadovski
Affiliation:
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz Duesbergweg 10 – 14, 55099 Mainz, Germany
Erli Sugiono
Affiliation:
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz Duesbergweg 10 – 14, 55099 Mainz, Germany
Get access

Abstract

The fourfold Horner olefination of tetraphenylmethane or –silane with four p-methyl- phosphonate groups and a variety of aromatic aldehydes with donor groups or extended conjugated systems results in the formation of tetrahedra from four chromophores connected via a central atom. Electronic spectra in solution reveal an electronic interaction between the π-systems. In the solid state, the emission of compounds with a dense packing is nearly identical to the solution spectra, more open structures show significant red shifts. The emission of scaffolds with 1-styrylpyrene chromophores is nearly completely quenched. Most of these tetrahedra are thermally stable up to 420°C. Depending on the diameter of the scaffold, glass transitions occur between 99°C and 169°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Müllen, K., Wegner, G. (Eds.) Electronic Materials: The Oligomer Approach, Wiley/VCH Weinheim 1998 Google Scholar
2 Hesemann, P., Vestweber, H., Pommerehne, J., Mahrt, R. F., Greiner, A., Adv. Mater. 7 388(1995).Google Scholar
3 Yang, Z., Hu, B., Karasz, F. E., Macromolecules 28, 6151 (1995).Google Scholar
4 Luther-Davies, B., Samoc, M., Woodruff, M., Chem. Mater. 8, 2586 (1996).Google Scholar
5 Wung, C. J., Pang, Y., Prasad, P. N., Karasz, F. E., Polymer 32, 605 (1991).Google Scholar
6 Salbeck, J., Ber. Bunsenges. Phys. Chem. 100, 1667 (1996).Google Scholar
7 Krämer, C. S., Zimmermann, T. J., Sailer, M., Müller, T. J. J., Synthesis 1163 (2002).Google Scholar
8 Zimmermann, T. J., Müller, T. J. J., Synthesis 1157 (2002).Google Scholar
9 Yeh, H.-C., Lee, R.-H., Chan, L.-H., Lin, T.-Y. J., Chen, C.-T., Balasubramanian, E., Tao, Y.-T., Chem. Mater. 13, 2788 (2001).Google Scholar
10 Liu, X.-M., He, C., Xu, J.-W., Tetrahedron Lett. 45 2004 15931597 Google Scholar
11 Robinson, M. R., Wang, S., Bazan, G. C., Cao, Y., Adv. Mater 12 1701(2000).Google Scholar
12 Drefahl, G., Lorenz, D., J. Prakt. Chem. 24 (4) 312 (1964).Google Scholar
13 All compounds have been characterized by IR, H- and C-NMR and mass spectroscopy.Google Scholar
14 Sugiono, E., PhD thesis, Mainz 2001.Google Scholar
15 Pernisz, U., Auner, N., Photoluminescence of Organically Modified Cyclosiloxanes in: Organosilicon Chemistry IV: From Molecules to Materials (Eds.: Auner, N., Weis, J.), VCH, Weinheim, 2000, 505 Google Scholar