Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T04:17:33.545Z Has data issue: false hasContentIssue false

Synthesis Design of TiO2 Nanotubes and Nanowires and Photocatalytic Applications in the Degradation of Organic Pollutants in the Presence or not of Microorganisms

Published online by Cambridge University Press:  10 May 2012

Asma Turki
Affiliation:
Laboratoire de Chimie des Matériaux et Catalyse, University El Manar, Tunis, Tunisia Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – University Lyon I, Villeurbanne, France
Pilar Fernández Ibáñez
Affiliation:
Plataforma Solar de Almería, Tabernas, Spain
Abdelhamid Ghorbel
Affiliation:
Laboratoire de Chimie des Matériaux et Catalyse, University El Manar, Tunis, Tunisia
Hafedh Kochkar
Affiliation:
Laboratoire de Chimie des Matériaux et Catalyse, University El Manar, Tunis, Tunisia
Chantal Guillard
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – University Lyon I, Villeurbanne, France
Gilles Berhault
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – University Lyon I, Villeurbanne, France
Get access

Abstract

1 D TiO2 nanomaterials (nanotubes, nanowires) were synthesized through hydrothermal treatment of TiO2 powder (P25) in concentrated alkaline solutions (NaOH for nanotubes, KOH for nanowires) followed by calcination at varying temperatures between 400°C and 700°C. Samples were characterized by HRTEM, XRD, Raman spectroscopy, and N2 adsorption-desorption isotherms. High surface area nanotubular TiO2 materials can maintain their 1D morphology up to a temperature of calcination of 400°C while changing their phase from hydrogenotitanate to anatase. The use of KOH leads to a retarded formation of anatase. Photocatalytic results showed that TiO2 anatase nanotubes calcined at 400°C can degrade formic acid with a rate constant four times higher than for P25. A direct correlation between surface area and photocatalytic activity explains the much higher activity of TiO2 anatase nanotubes. On the opposite, for the degradation of phenol, P25 remains more active. In the disinfection of water, contrary to P25, the high surface area of TiO2 nanotubes allows the simultaneous degradation of formic acid and the inactivation of pathogen fungus showing the interest of such materials for the treatment of wastewater.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bavykin, D. V., Friedrich, J. M. and Walsh, F. C., Adv. Mater. 18, 28072824 (2006).Google Scholar
2. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., Langmuir 14, 31603163 (1998).Google Scholar
3. Kochkar, H., Lakhdhar, N., Berhault, G., Bausach, M. and Ghorbel, A., J. Phys. Chem. C 113, 16721679 (2009).Google Scholar
4. Qamar, M., Yoon, C. R., Oh, H. J., Lee, N. H., Park, K., Kim, D. H., Lee, K. S., Lee, W. J. and Kim, S. J., Catal. Today 131, 314 (2008).Google Scholar