Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:39:24.197Z Has data issue: false hasContentIssue false

Synthesis and Properties of Mo/MoSix Microlaminates Using Ion Beam Assisted Deposition

Published online by Cambridge University Press:  15 February 2011

A. Mashayekhi
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
L. Parfitt
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
C. Kalnas
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
J. W. Jones
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
G. S. Was
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
D. W. Hoffman
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48124
Get access

Abstract

Films of Mo, MoSix and Mo/MoSix (1.22<x<1.35) multilayers were formed by physical vapor deposition (PVD) and ion beam assisted deposition (IBAD) onto (100) Si, glass and graphite substrates. Ion to atom arrival rate (R) ratios for IBAD varied from 0.01 to 0.1 and film thicknesses varied from 200 to 1100 nm. The Si/Mo ratio decreased with increasing R ratio. The oxygen content of Mo films was greater than silicide films, but both decreased substantially with increasing R ratio. Ar incorporation increased with increasing R ratio to a maximum of 1 at% in Mo and 5 at% in MoSi1.22. Mo films exhibit a strong (110) fiber texture at low R ratios. At the highest R ratio, a tilting of the (110) fiber texture by 15° occurs, along with the development of a distinct azimuthal texture indicative of planar channeling of the ion beam along (110) planes. The microstructure of the multilayer consists of small Mo grains and an amorphous silicide. Average film stress in Mo films increases from tension to a maximum value of 0.63 GPa and becomes compressive with increasing normalized energy. The stress in the MoSix films decreases with increasing normalized energy and saturates at a compressive stress of -0.24 GPa at 25 eV/atom. Indentation fracture experiments using a Vickers indenter with a 300 g load show a fracture behavior that is consistent with a residual stress effect for the IBAD monolithic MoSix and microlaminate, but which is influenced by additional factors in the PVD microlaminate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, T. C., Evans, A. G., Hecht, R. J. and Mehrabian, R., Acta metall. 39 1853 (1991).Google Scholar
2. Alpas, A.T., Embury, J. D., Hardwick, D. A. and Springer, R. W., J. Mater. Sci. 25, 1603 (1990).Google Scholar
3. Tench, D. and White, J., Met. Trans. A 15A, 2039 (1984).Google Scholar
4. Bhattacharya, R. S., Rai, A. K. and Mendiratta, M. G., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R. (Mat. Res. Soc. Proc., Pittsburgh, PA 1990) pp. 7178.Google Scholar
5. Hardwick, D. A. and Cordi, R. C., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R. (Mat. Res. Soc. Proc., Pittsburgh, PA 1990) pp. 6570.Google Scholar
6. Smidt, F. A., Inter. Mater. Rev. 35, 61 (1990).Google Scholar
7. Dolittle, L. R., Nucl. Instr. Meth. B9, 334 (1985).Google Scholar
8. Cuomo, J. J., Harper, J. M. E., Guamieri, C. R., Yee, D. S., Attanasio, L. J., Angilelio, J. and , C. Google Scholar
9. Liau, Z. L., Mayer, J. W., Brown, W. L. and Poate, J. M., J. Appl. Phys. 49, 5295 (1978).Google Scholar
10. Yee, D. S., Floro, J., Mikalsen, D. J., Cuomo, J. J., Ahn, K. Y., and Smith, D. A., J. Vac. Sci. Techn. A. 3, 2121 (1985).Google Scholar
11. See, L., Harper, J. M. E., Cuomo, J. J. and Smith, D. A., J. Vac. Sci. Technol. A 4, 443 (1986).Google Scholar
12. Harper, J. M. E., Smith, D. A., Yu, L. S. and Cuomo, J. J., in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olsen, G. L. and Poate, J. M., (Mater. Res. Soc. Proc. 51, Pittsburgh, PA 1986) pp. 343348.Google Scholar
13. Müller, K-H., J. Appl. Phys. 62, 1796 (1987).CrossRefGoogle Scholar
14. Hoffman, R. W., in Physics of Thin Films, edited by Hass, G. and Thun, R. E., (Academic Press, New York, 1966), p. 230.Google Scholar
15. Wu, T., J. Vac. Sci. Technol. 20, 349 (1982).Google Scholar
16. Lawn, B. R. and Fuller, E. R. Jr., J. Mat. Sci. 19,.4061 (1984).Google Scholar
17. Kalnas, C. E., Parfitt, L. J., Mashayekhi, A., Jones, J. W., Was, G. S. and Hoffman, D. W., in Intermetallic Matrix Composites II, edited by Miracle, D., Graves, J. and Anton, Don, (Mater. Res. Soc. Proc., Pittsburgh, PA 1992) in press.Google Scholar