Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:31:58.183Z Has data issue: false hasContentIssue false

Surface Plasmon Resonance based optical temperature sensor using ZnO:N thin film

Published online by Cambridge University Press:  20 July 2012

Kajal Jindal
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, INDIA
Monika Tomar
Affiliation:
Department of Physics, Miranda House, University of Delhi, Delhi, INDIA
Vinay Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, INDIA
*
Get access

Abstract

Temperature dependent optical properties of RF-sputtered c-axis oriented ZnO:N thin film have been investigated. Surface Plasmon modes are excited at the metal-dielectric interface in the Kretschmann-Reather configuration using prism coupling technique. Effect of ZnO:N thin film deposited over Prism-Au structure on the SPR reflectance is studied over a wide range of temperature from 300–500 K at 633 nm wavelength. The value of dielectric constant of ZnO:N film obtained by fitting the experimentally obtained data with the theoretically generated SPR curve at the optical frequency is found to increase linearly with temperature. The increase in dielectric constant (4.03 to 4.11) with increase in temperature from 300 K to 500 K indicates a promising application of the system as an efficient low-cost temperature sensor.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rajan, S. Chand, , and Gupta, B. D., Sens. Actuators B 123, 661 (2007).Google Scholar
2. Xu, Y. Chen, M. Tazawa, , and Jin, P., Appl. Phys. Lett. 88, 043114 (2006).Google Scholar
3. Saha, S., Mehan, N., Sreenivas, K., and Gupta, V., Appl. Phys. Lett. 95, 071106 (2009).Google Scholar
4. Shandilya, S., Tomar, M., Sreenivas, K., and Gupta, V., J. Lightwave Tech. 28, 20 (2010).Google Scholar
5. Jiao, S. J., Zhang, Z. Z., Lu, Y. M., Shen, D. Z., Yao, B., Zhang, J. Y., Li, B. H., Zhao, D. X., Fan, X. W., and Tang, Z. K., Appl. Phys. Lett. 88, 031911 (2006).Google Scholar
6. Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., and Boatner, L. A., J. Appl. Phys. 93, 1 (2003).Google Scholar
7. Menon, R., Sreenivas, K., and Gupta, V., J. Appl. Phys., 103, 094903, (2008).Google Scholar
8. Joshi, P., Chakraborti, S., Chakraborti, P., Haranath, D., Shanker, V., Ansari, Z.A., Singh, S.P, Gupta, V., J. Nanosc Nanotech., 9, 11 (2009)Google Scholar
9. Limpijumnong, S., Zhang, B., Wei, S.-H., Park, C.H., Phys. Rev. Lett. 92, 155504 (2004).Google Scholar
10. Lyons, J.L., Janotti, A., Van de Walle, C.G., Appl. Phys. Lett. 95, 252105 (2009).Google Scholar
11. Tarun, M. C., Zafar Iqbal, M., and McCluskey, M. D., AIP Advances, 1, 022105 (2011)Google Scholar
12. Wu, K.Y., Fang, Q.Q., Wang, W.N., Zhou, C., Huang, W. J., Li, J.G., Lv, Q.R., Liu, Y.M., Zhang, Q.P., and Zhang, H.M., J. Appl. Phys. 108, 063530 (2010)Google Scholar
13. Pan, S. S., Ye, C., Teng, X. M., Fan, H. T., and Li, G. H., Appl. Phys. A: Mater. Sci. Process. 85, 21 (2006).Google Scholar
14. Pokrowsky, P., Appl. Opt. 30, 3228 (1991).Google Scholar
15. Pan, S. S., Zhang, Y. X., Teng, X. M., Li, G. H., Li, L., J. Appl. Phys. 103, 093103 (2008)Google Scholar