No CrossRef data available.
Article contents
Supramolecular Ultrathin Film Strategies for DNA Assemblies: Substrates for Optobioelectronics, Gene Therapy, and Microarrays
Published online by Cambridge University Press: 21 March 2011
Abstract
We describe our strategies and results in the preparation of supramolecularly ordered ultrathin films of DNA assemblies using the layer-by-layer (LbL) alternate polyelectrolyte adsorption technique. The properties of DNA are intimately associated with their polyelectrolyte behavior in solution. Deposition at interfaces is governed by conformation, orientation, and charge density of these biomolecules in relation to the physisorption phenomena in oppositely charged surfaces. Thus, controlling the nature of surfaces (polymer charge density, ionic strength, other non-covalent interactions, etc.) is important in modifying the adsorption phenomena. In this work, differences in adsorption and incorporation of DNA with dyes, linear polymers and dendrimers are highlighted. A number of surface sensitive spectroscopic and microscopic techniques were used to probe the adsorption and multilayer assembly phenomena, e.g. surface plasmon resonance spectroscopy (SPS), AFM, quartz crystal microbalance (QCM) and ellipsometry. These studies are important for future applications such as the use of polycations as non-viral gene transfection vectors for drug-delivery and DNA adsorption on microarray surfaces. By combining with the alternate assembly of azobenzene and phthalocyanine dyes, we have been able to prepare optobiolelectronic substrates where the phenomena of irradiation and electrochemistry can be used to probe the ordering and response of these films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001