Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:17:56.205Z Has data issue: false hasContentIssue false

Structure and Properties of Resorcinol-Formaldehyde Gels

Published online by Cambridge University Press:  21 February 2011

Stephan A. Letts
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 5508 (L-482), Livermore, California 94550
Steven R. Buckley
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 5508 (L-482), Livermore, California 94550
Fung-Ming Kong
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 5508 (L-482), Livermore, California 94550
Edward F. Lindsay
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 5508 (L-482), Livermore, California 94550
Margaret L Sattler
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 5508 (L-482), Livermore, California 94550
Get access

Abstract

The condensation polymerization of resorcinol and formaldehyde catalized by sodium carbonate produces a sol that aggregates to form a gel. Using viscometry the effect of temperature and catalyst concentration on the sol-gel transition was investigated. At a solids concentration of 3%, gelation occurred in 1500 minutes. The rate of increase in viscosity was a function of both catalyst concentration and temperature. The structure of the gels was studied by freeze-fracture TEM. In the sol phase the RF solutions contain particles of 5 to 20 nm diameter. After gelation the particles form a crosslinked network with a pore structure of 100 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pekala, R. W. and Kong, F. M., Polym. Preprints, 30 221 (1989).Google Scholar
2. Pekala, R. W. and Kong, F. M., Revue de Physique Applique, C4, 24 (1989).Google Scholar
3. Hair, L. M., Pekala, R. W., Stone, R. E., Chen, D. and Buckley, S. R., J. Vac. Sci. Technol. A6.2559 (1988).Google Scholar
4. Herrmann, H. J., Landau, D. P. and Stauffer, D., Phys. Rev. Lett. 49 412 (1982).Google Scholar
5. Menold, R., Luttge, B. and Kaiser, W., Advances in Colloid and Kinerface Science, 5, 281 (1976).Google Scholar
6. Luckham, P. F., Vincent, B., McMahon, J. and Tadros, Th. F., Dolloids and Surfaces, 6, 83(1983).Google Scholar
7. Ruchel, R., Steere, R. L. and Erbe, E. F., J. Chromatography, 166, 563 (1778).Google Scholar
8. Zasadzinski, J. A. N., Kramer, J., Chu, A. and Prud'homme, R. K., Chem. Eng. Comm. 52 283 (1987).Google Scholar
9. Muller, T., hakert, H. and Echert, Th., Colloid Polym. Sci., 267, 230 (1989).Google Scholar
10. Donaldson, C. C., McMahon, J., Stewart, R. F. and Sutton, D., Colloids and Surfaces, 18, 373 (1986).Google Scholar