Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:46:31.507Z Has data issue: false hasContentIssue false

Structural Properties of a-Ge1-xCx:H Alloys Prepared by the RF Sputtering Technique

Published online by Cambridge University Press:  15 February 2011

F. C. Marques
Affiliation:
Instituto de Física “Gleb Wataghin” Universidade Estadual de Campinas, UNICAMP CP 6165, 13081–970, Campinas, SP, Brazil
J. Vilcarromero
Affiliation:
Instituto de Física “Gleb Wataghin” Universidade Estadual de Campinas, UNICAMP CP 6165, 13081–970, Campinas, SP, Brazil
F. L. Freire Jr
Affiliation:
Departamento de Física, PUC-Rio - Pontificia Universidade Católica do Rio de Janeiro CP 38071, 22453–970 Rio de Janeiro, RJ, Brazil
Get access

Abstract

Structural and mechanical properties of hydrogenated amorphous germanium carbon (a-Ge1-xCx:H) alloys are presented. The films were prepared by the rf-co-sputtering technique using a graphite/germanium composed target. The carbon and germanium relative concentrations were determined by RBS, and the total hydrogen concentration by ERDA measurements. An increase in the optical gap was measured for low carbon content (0 < × < 0.15). For higher values of x the optical gap is almost constant. Infrared transmission absorption spectra show several absorption bands related to Ge-C stretching, C-Hn (n = 1,2,3) and Ge-H stretching and bending modes. The mechanical internal stress was strongly affected by the incorporation of carbon. The trends of the optical gap, refractive index, infrared absorption and mechanical stress as a function of the carbon content suggest that the high carbon concentration alloys have polymeric and/or graphite-like contribution in their structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taylor, P. C. and Doyle, N.J., J. Seri. Met. 1, 161 (1967).Google Scholar
2. Anderson, D. A. and Spear, W. E., Phil. Mag., 35, p. 116 (1977).Google Scholar
3. Nitta, S., Sakaida, M., Musare, I., Kawai, M. and Matsumani, N., J. Non-Crys. Solids 77&78, p. 983986 (1985).Google Scholar
4. Marimoto, A., Kataoka, T., Kumeda, M. and Shimizu, T., Phil. Mag. B, 50, 4, pp. 517537 (1984).Google Scholar
5. Kumar, S., Kashyap, S. C, and Chopra, K. L., J. Non-Crys. Solids 101, p. 287290 (1988).Google Scholar
6. Shinar, R., J. Vac. Sci. Technol. A 6, pp. 29102913 (1988).Google Scholar
7. Drusedau, T. P., Annen, A., Schroder, B., and Freistedt, H., Phil. Mag. B, 69, 1, pp. 120 (1994).Google Scholar
8. Marques, F. C. and Chambouleyron, I., Proceedings of the 9th European Conference on Photovoltaic Solar Energy, edited by Palz, W., Wrixon, G.T., and Helm, P. (Kluwer Academic, Dordrecht, 1989), p. 10421045.Google Scholar
9. Zanatta, R. and Chambouleyron, I., Phys. Rev. B 46, 2119, (1992).Google Scholar
10. Turner, W. A., Jones, S. J., Pang, D., Bateman, B. F., Chen, J.H., Li, Y.-Mi., Marques, F. C., Wetsel, A. E., Wickbold, P., Paul, W., Bodart, J., Norberg, R. E., El Zawawi, I. and Theye, M. L., J. Appl. Phys. 67 (12), 7430 (1990).Google Scholar
11. Liu, E. Z., Pang, D., Paul, W., and Chen, J. H., Mat. Res. Soc. Symp. Proc., V. 258, p. 529534 (1992)Google Scholar
12. Chambouleyron, I. and Marques, F. C., J. Appl. Phys. 65 (4), p. 15911597 (1989).Google Scholar
13. Andersen, H. H. and Bay, H. L., Sputtering by Particle Bombardment I, edited by Behrisch, R. (Springer, Berlin, 1981), Chap. 4.Google Scholar
14. Wickboldt, P., Marques, F. C, Jones, S., Pang, D., Turner, W., and Paul, W., J. of Non-Crystalline Solids 137&138, 8386 (1991).Google Scholar
15. Bounouh, Y., Thèye, M.L., Dehbi-Alaoui, A., Mattews, A., and Stoquert, J.P., Phys. Rev. B 51 (15), 9597, (1995).Google Scholar
16. Bullot, J. and Schmidt, M.P., Phys. Stat. Solidi (b) 143, 345 (1987).Google Scholar