Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T17:53:45.455Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of Heteroepitaxial HgCdTe/CdZnTe/GaAs/Si

Published online by Cambridge University Press:  21 February 2011

S.M. Johnson
Affiliation:
Santa Barbara Research Center, 75 Coromar Dr., Goleta, CA 93117
W.L. Ahlgren
Affiliation:
Santa Barbara Research Center, 75 Coromar Dr., Goleta, CA 93117
M. H. Kalisher
Affiliation:
Santa Barbara Research Center, 75 Coromar Dr., Goleta, CA 93117
J. B. James
Affiliation:
Santa Barbara Research Center, 75 Coromar Dr., Goleta, CA 93117
W. J. Hamilton Jr.
Affiliation:
Santa Barbara Research Center, 75 Coromar Dr., Goleta, CA 93117
Get access

Abstract

The structural and electrical properties of heteroepitaxial HgCdTe/CdZnTe/GaAs/Si were evaluated using high-resolution x-ray diffraction techniques and Hall-effect measurements as a function of temperature. Significant tilting of the layers was found for both {100} and {111} CdZnTe layers grown on misoriented {100}GaAs/Si substrates, consistent with the interpretation of a low-angle tilt boundary being formed at the interface to relieve the large lattice mismatch between the layers. The GaAs layer is in a state of biaxial tension before and after the growth of the CdZnTe layers. The x-ray FWHM of HgCdTe layers grown by LPE on these substrates was found to be reduced from that of the MOCVD-grown CdZnTe buffer layer due to both an annealing effect during LPE growth and to the increased distance of layer surface from the defective CdZnTe/GaAs interface. Hall-effect mobility for {100}HgCdTe layers was nearly identical to that of layers grown on bulk CdZnTe substrates. High-quality heterojunction infrared detectors have been fabricated using these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, T., Kalisher, M.H., Stevens, A.P., and Herning, P.E., in Materials for Infrared Detectors and Sources. edited by Farrow, R.F.C., Schetzina, J.F., and Cheung, J.T. (Mater. Res. Soc. Vol 90, Pittsburgh, PA, 1987), p. 321.Google Scholar
2. Tung, T., J. Cryst. Growth 86, 161 (1988).Google Scholar
3. Zanio, K., Bean, R., Hay, K., Fischer, R., and Moroc, H. in Heteroepitaxy on Silicon, edited by Fan, J.C.C. and Poate, J.M. (Mater. Res. Soc. Vol 67, Pittsburgh, PA, 1986), p. 141.Google Scholar
4. Kay, R., Bean, R., Zanio, K., Ito, C., and Mcintyre, D., Appl. Phys. Lett. 51, 2211 (1987).Google Scholar
5. Zanio, K.R. and Bean, R.C., Proc. SPIE 930, 44 (1988).Google Scholar
6. Bean, R., Zanio, K., and Ziegler, J., J. Vac. Sci. Technol. A7(2), 343 (1989).Google Scholar
7. Nouhi, A., Radhakrishnan, G., Katz, J., and Koliwad, K., Appl. Phys. Lett. 52, 2028 (1988).Google Scholar
8. Cody, N.W., Sudarsan, U., and Solanki, R., J. Appl. Phys 66, 449 (1989).Google Scholar
9. Edwall, D.D., Bajaj, J., and Gertner, E.R., 1989 U.S. Workshop on Physics and Chemistry of HgCdTe and related II-VI Compounds submitted to J. Vac. Sci. Technol. A. (1990).Google Scholar
10. Ahlgren, W.L., Johnson, S.M., Smith, E.J., Ruth, R.P., Johnston, B.C., Kalisher, M.H., Cockrum, C.A., James, T.W., Arney, D.L., Ziegler, C.K., and Lick, W., J. Vac. Sci. Technol. A7(2), 331 (1989).Google Scholar
11. Ahlgren, W.L., Johnson, S.M., Hamilton, W.J., Szilagyi, A., Tompa, G.S., Ziegler, C.K., and Lick, W.J., these proceedings.Google Scholar
12. Johnson, S.M., Kalisher, M.H., Ahlgren, W.L., James, J.B., and Cockrum, C.A., submitted to Appl. Phys. Lett.Google Scholar
13. Miller, K.T., Hughes Research Laboratories, unpublished.Google Scholar
14. Bartels, W.J. and Nijman, W., J. Cryst. Growth 44, 518 (1978).Google Scholar
15. Vreeland, T. Jr., Dommann, A., Tsai, C.-J., and Nicolet, M.-A., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A. (Mater. Res. Soc. Vol 130, Pittsburgh, PA 1989) p. 3.Google Scholar
16. Johnson, S.M., Ahlgren, W.L., Smith, M.T., Johnston, B.C., and Sen, S., in Advances in Materials. Processing. and Devices in III-V Compound Semiconductors, edited by Sadana, D.K., Eastman, L., and Dupuis, R. (Mater. Res. Soc. Vol. 144, Pittsburgh, PA 1989), p. 121.Google Scholar
17. Cohen-Solal, G., Bailly, F., and Barbe, M., Appl. Phys. Lett. 49, 1519 (1986).Google Scholar
18. Yao, T., Okada, Y., Kawanmi, H., Matsui, S., Imagawa, A., and Ishida, K., in Heteroeoitaxy on Silicon II, edited by Fan, J.C.C., Phillips, J.M., and Tsaur, B.-Y. (Mater. Res. Soc. Vol. 91, Pittsburgh, PA 1987), p. 63.Google Scholar
19. Kleebe, H.-J., Hamilton, W.J., Ahlgren, W.L., Johnson, S.M., and Ruhle, M., these proceedings.Google Scholar
20. Oron, M., Raizman, A., Shtrikman, H., and Cinader, G., Appl. Phys. Lett. 52, 1059 (1988).Google Scholar
21. Kalisher, M.H., J. Cryst. Growth 70, 365 (1984).Google Scholar
22. Keir, A.M., Graham, A., Barnett, S.J., Giess, J., Astles, M.G., Irvine, S.J.C., Fourth Intl. Conf. on II-VI Compounds, Berlin, Sept. 1989.Google Scholar