Article contents
STM Studies of Electrode/Electrolyte Interfaces and Silicon Surface Reactions in Controlled Atmospheres
Published online by Cambridge University Press: 10 February 2011
Abstract
We have assembled a scanning tunneling microscope with an inverted sample that allows the sample surface to be contacted by fluid electrolytes in a controlled atmosphere. A hanging meniscus is formed between the sample and a small cup surrounding the tunneling tip. In-situ imaging of the electrode/electrolyte interface is conveniently achieved with clean samples under potentiostatic control. The functioning of the microscope is illustrated by the imaging of the electrodeposition of copper on gold. This microscope has been used to image hydrogen-terminated silicon surfaces and to demonstrate that islands, tentatively assigned as silicon oxide, are formed on rinsing in water but can be avoided if the surface is not rinsed on withdrawal from the ammonium fluoride etching solution. Finally, STM shows that the convenient, gas-phase photochlorination of H-Si(111) produces the simple Cl-Si(111)(1×1) structure with little or no etching of the silicon surface.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 1
- Cited by