Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T11:07:43.832Z Has data issue: false hasContentIssue false

Stable superconducting niobium ultrathin films

Published online by Cambridge University Press:  30 August 2011

Cécile Delacour
Affiliation:
Institut Néel, CNRS-Université Joseph Fourier-Grenoble INP, BP 166, F-38042 Grenoble, France.
Luc Ortega
Affiliation:
Institut Néel, CNRS-Université Joseph Fourier-Grenoble INP, BP 166, F-38042 Grenoble, France.
Bernard Pannetier
Affiliation:
Institut Néel, CNRS-Université Joseph Fourier-Grenoble INP, BP 166, F-38042 Grenoble, France.
Vincent Bouchiat
Affiliation:
Institut Néel, CNRS-Université Joseph Fourier-Grenoble INP, BP 166, F-38042 Grenoble, France.
Get access

Abstract

We report on a combined structural and electronic analysis of niobium ultrathin films (from 2.5 to 10 nm) epitaxially grown in ultra-high vacuum on atomically flat sapphire wafers. We demonstrate a structural transition in the early stages of Nb growth, which coincides with the onset of a superconducting-metallic transition (SMT). The SMT takes place on a very narrow thickness range (1 ML). The thinnest superconducting sample (3 nm/ 9ML) has an offset critical temperature above 4.2K and allows to be processed by standard nanofabrication techniques to generate air and time stable superconducting nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, T., et al. ., Nature Physics 6, 104 (2010).Google Scholar
2. Clark, K., Hassanien, A., Khan, S., Braun, K.-F., Tanaka, H., and Hla, S.-W., Nature Nanotech 5, 261 (2010).Google Scholar
3. Oya, G., Koishi, M., and Sawada, Y., Journal of Applied Physics 60, 1440 (1986).Google Scholar
4. Wolfing, B., Theis-Brohl, K., Sutter, C., and Zabel, H., J. Phys. Condens. Matter 11, 2669 (1999).Google Scholar
5. Wildes, A., Mayer, J., and Theis-Bröhl, K., Thin Solid Films 401, 7 (2001).Google Scholar
6. Flynn, C., J. Phys. F: Met. Phys. 18 L195 (1988).Google Scholar
7. Finkel’Stein, A., Physica B: Condensed Matter 197, 636 (1994).Google Scholar
8. Guo, Y., et al. ., Science 306, 1915 (2004).Google Scholar
9. Bose, S., Banerjee, R., and Genc, A., J. Phys. Condens. Matter 18, 4553 (2006).Google Scholar
10. Hsu, j. W. P., Park, S. I., Deutscher, G., and Kapitulnik, A., Phys. Rev. B 43, 2648 (1990).Google Scholar
11. Goldman, A. M. and Markovic, N., Physics Today 51, 39 (1998).Google Scholar
12. Bouchiat, V., Faucher, M., Thirion, C., Wernsdorfer, W., Fournier, T., and Pannetier, B., Appl. Phys. Lett. 79, 123 (2001).Google Scholar