Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T09:19:41.156Z Has data issue: false hasContentIssue false

Spin-Dependent Transport in Si Thin-Film Transistors

Published online by Cambridge University Press:  15 February 2011

G. Kawachi
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., Hitachi, Ibaraki, 319–12, Japan
C F. O. Graeff
Affiliation:
Departamento de Fisica e Matematica, FFCLRP-USP Brazil
M. S. Brandt
Affiliation:
Walter Shottky Institut, Technische Universität München, Am Coulombwall, Garching, 85748, Germany
M. Stutzmann
Affiliation:
Walter Shottky Institut, Technische Universität München, Am Coulombwall, Garching, 85748, Germany
Get access

Abstract

Defects and carrier transport processes in silicon based thin-film transistors (TFTs) are investigated by spin-dependent transport (SDT). The resonance signal arising from less than 106 defects in the hydrogenated amorphous silicon (a-Si:H) TFT is detected with a sufficient signal-to-noise ratio. The leakage current mechanism in a-Si:H under high source-drain fields is identified by SDT as electron hopping via defect states located at the interface between undoped a-Si:H and the passivation silicon nitride layer. At temperatures below 100K, spin-dependent hopping of electrons in conduction band tail states is observed. The change of the dominant transport path from extended states conduction to variable range hopping with decreasing temperature is confirmed. SDT measurements on polycrystalline silicon (poly-Si) TFTs having silicon nitride and silicon dioxide as the gate dielectric films reveal differences in the defect structure in these devices. The overall results demonstrate that SDT is a powerful method to probe paramagnetic defects and carrier transport in TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lepine, D. J., Phys. Rev. B 6, 436 (1972).Google Scholar
2. Solomon, I., Solid State Commun. 20, 215 (1976).Google Scholar
3. Jupina, M.A. and Lenahan, P. M., IEEE Trans. Nucl. Sci. 36, 1800 (1989).Google Scholar
4. Vranch, R. L., Henderson, B., and Pepper, M., Appl. Phys. Lett. 52, 1161 (1988).Google Scholar
5. Kriek, J. T. and Lenahan, P., Appl. Phys. Lett. 59, 3437 (1991).Google Scholar
6. Stathis, J. H. and DiMaria, D. J., Appl. Phys. Lett. 61, 2887 (1992).Google Scholar
7. Schubert, W. K. and Lenahan, P. M., Appl. Phys Lett. 43, 497 (1983).Google Scholar
8. Seager, C. H., Venturini, E. L., and Schubert, W. K., J. Appl. Phys. 71, 5059 (1992).Google Scholar
9. Dersch, H., Schweitzer, L., and Stuke, J., Phys. Rev. B 28, 4678 (1983).Google Scholar
10. Dersch, H. and Schweitzer, L., Philos. Mag. B 50, 397 (1984).Google Scholar
11. Brandt, M. S. and Stutzmann, M., Phys. Rev. 43, 5184 (1991).Google Scholar
12. Lips, K., Schütte, S., and Fuhs, W., Philos. Mag. B 65, 945 (1992).Google Scholar
13. Lips, K. and Fuhs, W., J. Appl. Phys. 74, 3993 (1993).Google Scholar
14. Aoyama, T., Kawachi, G., Konishi, N., Suzuki, T., Okajima, Y., and Miyata, K., J. Electrochem. Soc. 136, 1169(1989).Google Scholar
15. Mimura, A., Konishi, N., Ono, K., Ohwada, J., Hosokawa, Y., Ono, Y. A., Suzuki, T., Miyata, K., and Kawakami, H., IEEE Trans. Electron Devices ED–36, 351 (1989).Google Scholar
16. Tanaka, T., Asuma, H., Ogawa, K., Shinagawa, Y., Ono, K., and Konishi, N., IEDM'93 Tech. Digest 389 (1993).Google Scholar
17. Kawachi, G., Graeff, C.F.O., Brandt, M. S., and Stutzmann, M., Jpn. J. Appl. Phys. 36, 121, (1997).Google Scholar
18. Kawachi, G., Graeff, C.F.O., Brandt, M. S., and Stutzmann, M., Phys. Rev. B 54, 7957 (1996).Google Scholar
19. Warren, W. L., Lenahan, P. M., and Curry, S. E., Phys. Rev. Lett. 65, 207 (1990).Google Scholar
20. Yan, H., Kumeda, M., Ishii, N., and Shimizu, T., Jpn. J. Appl. Phys. 32, 876 (1993).Google Scholar
21. Lustig, N., Kanicki, J., Wisnieff, R., and Griffith, J., in Proceedings of Material Research Society Symposium Vol.118 (MRS, Pittsburgh, 1988), p. 267.Google Scholar
22. Nagy, A., Hundhausen, M., Ley, L., Brunst, G., and Holzenkämpfer, E., Phys. Rev. B 52, 11289, (1995).Google Scholar
23. Mott, N. F., J Non-Cryst. Solids 1, 1 (1968).Google Scholar
24. Kawachi, G., Graeff, C.F.O., Brandt, M. S., and Stutzmann, M., in Extended Abstracts of the 1996 International Conference on Solid State Devices and Materials (The Japan Society of Applied Physics, Tokyo, 1996) p. 248.Google Scholar
25. Schubert, W. K. and Lenahan, P. M., Appl. Phys Lett. 43, 497 (1983).Google Scholar
26. Hasegawa, S., Takenaka, S., and Kuráta, Y., J. Appl. Phys. 53, 5022 (1982).Google Scholar
27. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
28. Uchida, Y. and Matsumura, M., in Proceedings of Material Research Society Symposium Vol. 345 (MRS, Pittsburgh, 1994), p. 105.Google Scholar
29. Shinagawa, Y., Anno, K., Tanaka, T., and Mimura, A., unpublished.Google Scholar
30. Nishi, Y, Tanaka, T., and Ohwada, A., Jpn. J. Appl. Phys. 11, 85 (1972).Google Scholar
31. Poindexter, E. H., Caplan, P. J., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 52, 879, (1981).Google Scholar
32. Stesmans, A. and Van Gorp, G., Phys. Rev. B 52, 8904, (1995).Google Scholar
33. Aoyama, T., Koike, Y., Okajima, Y., Konishi, N., Suzuki, T., and Miyata, K., IEEE Trans. Electron Devices ED–38, 2058, (1991).Google Scholar