Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:35:49.661Z Has data issue: false hasContentIssue false

Smaller Carbon Clusters: Linear, Cyclic, Polyhedral

Published online by Cambridge University Press:  15 February 2011

Z. Slanina
Affiliation:
Department of Chemistry, National Chung-Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan On a leave of absence from the Academy of Sciences of the Czech Republic, Prague
S.-L. Lee
Affiliation:
Department of Chemistry, National Chung-Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
M. Smigel
Affiliation:
Convex Computer Corporation, Richardson, TX 75083-3851, USA
J. Kurtz
Affiliation:
Lockheed Engineering and Science Corporation, P. O. Drawer MM, Las Cruces, NM 88004, USA
L. Adamowicz
Affiliation:
Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
Get access

Abstract

The MP2 perturbation treatment with the 6-31G* basis set has been applied to linear, cyclic, and polyhedral structures of Cn, n = 6-13, esp. to C12 in this report. While the linear and cyclic species can co-exist, polyhedral ones are too high in energy. Preliminary results on C8H (related to diffuse interstellar bands) are reported, too.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weltner, W. Jr. and Zee, R. J. van, Chem. Rev. 89, 1713 (1989).Google Scholar
2. Kroto, H. W., Allaf, A. W., Balm, S. P., Chem. Rev. 91, 1213 (1991).Google Scholar
3. Helden, G. von, Hsu, M.-T., Kemper, P. R. and Bowers, B. T., J. Chem. Phys. 95, 3835 (1991).Google Scholar
4. Zajfman, D., Feldman, H., Heber, O., Kella, D., Majer, D., Vager, Z., Naaman, R., Science 258, 1129 (1992).Google Scholar
5. Helden, G. von, Kemper, P. R., Gotts, N. G. and Bowers, M. T., Science, 259, 1300, (1993).Google Scholar
6. Raghavachari, K., Whiteside, R. A., Pople, J. A., J. Chem. Phys. 85, 6623 (1986).Google Scholar
7. Raghavachari, K., Binkley, J. S., J. Chem. Phys. 87, 2191 (1987).Google Scholar
8. Martin, J. M. L., Francois, J. P., Gijbels, R., J. Chem. Phys. 90, 3403 (1989).Google Scholar
9. Parasuk, V. and Almlöf, J., J. Chem. Phys. 91, 1137 (1989).Google Scholar
10. Liang, C., Schaefer, H. F. III, J. Chem. Phys. 93, 8844 (1990).Google Scholar
11. Martin, J. M. L., Francois, J. P., Gijbels, R., J. Chem. Phys. 93, 8850 (1990).Google Scholar
12. Andreoni, W., Scharf, D., Giannozzi, P., Chem. Phys. Lett. 173, 449 (1990).Google Scholar
13. Kurtz, J., and Adamowicz, L., Astrophys. J. 370, 784 (1991).Google Scholar
14. Martin, J. M. L., François, J. P., Gijbels, R., J. Chem. Phys. 94, 3753 (1991).Google Scholar
15. J. Martin, M. L., François, J. P., Gijbels, R., J. Comput. Chem. 12, 52 (1991).Google Scholar
16. Ewing, D. W., Z. Phys. D, 19, 419 (1991).Google Scholar
17. Slanina, Z., Rudziński, J. M., Ōsawa, E., Z. Phys. D, 19, 431 (1991).Google Scholar
18. Martin, J. M. L., François, J. P., Gijbels, R., Almlöf, J., Chem. Phys. Lett. 187, 367 (1991).Google Scholar
19. Watts, J. D. and Bartlett, R. J., Chem. Phys. Lett. 190, 19 (1992).Google Scholar
20. Parasuk, V. and Almlöf, J., Theor. Chem. Acta, 83, 227 (1992).Google Scholar
21. Slanina, Z., Kurtz, J., Adamowicz, L., Chem. Phys. Lett. 196, 208 (1992).Google Scholar
22. Slanina, Z., Kurtz, J., Adamowicz, L., Mol. Phys. 76, 387 (1992).Google Scholar
23. Nygren, M. A., Pettersson, L. G. M., Chem. Phys. Lett. 97, 6592 (1993).Google Scholar
24. Slanina, Z., Lee, S.-L., François, J.-P., Kurtz, J.. Adamowicz, L., Chem. Phys. Lett. 223, 397 (1994).Google Scholar
25. Slanina, Z., Lee, S.-L., François, J.-P., Kurtz, J., Adamowicz, L., Smigel, M., Mol. Phys. 81, 1489 (1994).Google Scholar
26. Slanina, Z., Lee, S.-L., Smigel, M., Kurtz, J., Adamowicz, L., Computations of Smaller Carbon Aggregates, Proc. San Francisco 1994 Fullerene Symposium.Google Scholar
27. Giesen, T. F., Orden, A. van, Hwang, H. J., Fellers, R. S., Provencal, R. A., and Saykally, R. J., Science, 265, 756 (1994).Google Scholar
28. Snow, T. P., Seab, C. G., Astron. Astrophys. 213, 291 (1989).Google Scholar
29. Kroto, H. W., Jura, M., Astron. Astrophys. 263, 275 (1992).Google Scholar
30. Fulara, J., Lessen, D., Freivogel, P., Maier, J. P., Nature 366, 439 (1993).Google Scholar
31. Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzalez, C., DeFrees, D. J., Fox, D. J., White-side, R. A., Seeger, R., Melius, C. F., Baker, J. Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., Pople, J. A., Gaussian 90, Revision I, (Gaussian, Inc. Pittsburgh, 1990).Google Scholar
32. Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., res, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., DeFrees, D. J., Baker, J., Stewart, J. J. P., Pople, J. A., Gaussian 92, Revision C, (Gaussian, Inc. Pittsburgh, 1992).Google Scholar
33. Slanina, Z., Chem. Phys. Lett. 173, 164 (1990).Google Scholar
34. Kim, S. G. and Tomànek, D., Phys. Rev. Lett. 72, 2418 (1994).Google Scholar