Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T14:11:02.509Z Has data issue: false hasContentIssue false

Simulation of Y-Ba-Cu-0 Epitaxial Growth and Microstructure Formation

Published online by Cambridge University Press:  25 February 2011

C. P. Burmester
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA.
L. T. Wille
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA.
R. Gronsky
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA. National Center for Electron Microscopy, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
Get access

Abstract

The results of systematic computer simulations of the deposition and growth of Y-Ba-Cu-0 thin films is reported. The deposition process is modeled by means of a three-step Monte Carlo simulation incorporating one sorption deposition mode and two modes of film annealing addressing surface and bulk diffusion. The simulation is used to investigate the evolution of surface morphology and film microstructure, growth rate anisotropy, and the dependence of film texture on deposition parameters. Characteristic defects and surface morphologies observed by simulation are found to be in good agreement with those observed experimentally. It is observed that surface kinetics can dominate the evolution of film microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eveils, J., Phys. World, 3 (1990) 24.Google Scholar
2 Humphreys, R. G., Satchell, J. S., Chew, N. G., Edwards, J. A., Goodyear, S. W., Blenkisop, S. E., Dosser, O. D., and Cullis, A. G., Supercond. Sci. Technol., 3 (1990) 38.Google Scholar
3 Olsson, E., Gupta, A., Thouless, M. D., Segmuller, A., and Clarke, D. R., Appl. Phys. Lett., 58, (1991) 1682.CrossRefGoogle Scholar
4 Mouritsen, O. G., Computer Studies of Phase Transistions and Critical Phenomena, Springer Series in Computational Physics, Springer-Verlag, Berlin Heidelberg, 1984.Google Scholar
5 Hill, T. L., J. Chem. Phys., 15 (1947) 761.Google Scholar
6 Temkin, D. E., Sov. Phys. Cryst,. 14 (1969) 344.Google Scholar
7 Char, K., Hahn, M. R., Hylton, T. L., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., IEEE Trans. Magnetics, 25 (1989) 2422.Google Scholar
8 Fendorf, M., Burmester, C.P., Wille, L.T., and Gronsky, R., J. Less-Common Metals 164–165, 84 (1990).Google Scholar
9 Fendorf, M., Burmester, C.P., Wille, L. T., and Gronsky, R., Appl. Phys. Lett. 57, 2481 (1990).CrossRefGoogle Scholar
10 Karpinski, J., Rusiecki, S., Kaldis, E., and Jilek, E., in High Tc Superconductor Materials; edited by Habermeier, H.U., Kaldis, E., and Schoenes, J. (North Holland, Amsterdam, 1990).Google Scholar
11 Fendorf, M., Tidjani, M.E., Burmester, C.P., Wille, L. T., and Gronsky, R., in: Proceedings of the International Conference on Advanced Materials (ICAM 91), European Materials Research Society 1991 Spring Meeting (Elsevier Science Publishers, Amsterdam, 1991), in press.Google Scholar
12 Li, D. X., Wang, X. K., Li, D. Q., Chang, R. P. H., and Ketterson, J. B., J. Appl. Phys., 66 (1989) 5505.Google Scholar
13 Sandstrom, R. L., Gallagher, W. J., Dinger, T. R., Koch, R. H., Laibowitz, R. B., Kleinsasscr, A. W., Gambino, R. J., Bumble, B., and Chisholm, M. F., Appl. Phys. Leti., 53 (1988) 444.Google Scholar
14 Phillips, J. R., Mayer, J. W., Martin, J. A., and Nastasi, M., Appl. Phys. Lett., 56 (1990) 1374.CrossRefGoogle Scholar
15 Wang, X. K., Sheng, K. C., Lee, S. J., Shen, Y. H., Song, S. N., Li, D. X., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett., 54 (1989) 1573.Google Scholar
16 Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatcsan, T., Appl. Phy. Lett., 57 (1990) 1064.Google Scholar
17 Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., and Geballe, T. H., Physica C, 171 (1990) 354.Google Scholar
18 Somorjai., G., Lecture notes for: Principles of Surface Chemistry, Department of Chemistry, U.C. Berkeley, 1991 (unpublished).Google Scholar
19 Clemens, B. M., Nich, C. W., Kiul, J. A., Johnson, W. L., Josefowicz, J. Y., and Hunier, A. T., Appl. Phys. Lett., 53 (1988) 1871.Google Scholar
20 Nieh, C. W. and Anthony, L., Appl. Phys. Leu., 56 (1990) 2138.Google Scholar