No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The microstructural defects of nanocrystalline SnO2 thin films prepared by pulsed laser deposition have been investigated using transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. Defects inside nanocrystalline SnO2 thin films could be significantly reduced by annealing the SnO2 thin films at 300 °C for 2 h. High-resolution transmission electron microscopy showed that stacking faults and twins were annihilated upon annealing. In particular, the edges of the SnO2 nanoparticles demonstrated perfect lattices free of defects after annealing. Raman spectra also confirmed that annealing the specimen was almost defect-free. By using thermal annealing, defect-free nanocrystalline SnO2 thin films can be prepared in a simple and practical way, which holds promise for applications as transparent electrodes and solid-state gas sensors.