Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T02:27:27.129Z Has data issue: false hasContentIssue false

Silicon Germanium Oxide (SixGeyO1-x-y) Infrared Sensitive Material for Uncooled Detectors

Published online by Cambridge University Press:  01 February 2011

Reza Anvari
Affiliation:
[email protected], Uinversity of Missouri, Columbia, Electrical and Computer Engineering, Columbia, Missouri, United States
Qi Cheng
Affiliation:
[email protected], Uinversity of Missouri, Columbia, Electrical and Computer Engineering, Columbia, Missouri, United States
Muhammad Lutful Hai
Affiliation:
[email protected], Uinversity of Missouri, Columbia, Electrical and Computer Engineering, Columbia, Missouri, United States
Truc Phan Bui
Affiliation:
[email protected], Uinversity of Missouri, Columbia, Electrical and Computer Engineering, Columbia, Missouri, United States
A. J. Syllaios
Affiliation:
[email protected], L-3 Communications, Strategic Development, 13532 N. Central Expressway, Dallas, Texas, 75243, United States, 972-528-1441, 972-528-1422
S. K. Ajmera
Affiliation:
[email protected], L-3 Communications Infrared Products, Dallas, Texas, United States
Mahmoud F. Almasri
Affiliation:
Get access

Abstract

This paper presents the formation and the characterization of silicon germanium oxide (SixGeyO1-x-y) infrared sensitive material for uncooled microbolometers. RF magnetron sputtering was used to simultaneously deposit Si and Ge thin films in an Ar/O2 environment at room temperature. The effects of varying Si and O composition on the thin film's electrical properties which include temperature coefficient of resistance (TCR) and resistivity were investigated. The highest achieved TCR and the corresponding resistivity at room temperature were -5.41 %/K and 3.16×103 ohm cm using Si0.039Ge0.875O0.086 for films deposited at room temperature.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schimert, T., Hanson, C., Brady, J., Fagan, T., Taylor, M., McCardel, W., Gooch, R., Gohlke, M., and Syllaios, A. J., “Advances in small-pixel, large-format -Si bolometer arrays,” Proc. SPIE, vol. 7298, 72980T, 2009.Google Scholar
2 Murphy, D., Ray, M., Wyles, J., et al., “640 × 512 17 μm Microbolometer FPA and sensor development,” Proc. SPIE, vol. 6542, 65421Z, 2007.Google Scholar
3 Li, Chuan, Skidmore, George, Howard, Christopher, Clarke, Elwood, and Han, C. J., “Advancement in 17-micron pixel pitch uncooled focal plane arrays,” Proc. SPIE, Vol. 7298, 72980S, 2009.Google Scholar
4 Blackwell, R., Lacroix, D., Bach, T., Ishii, J., Hyland, S., Dumas, T., Carpenter, S., Chan, S., Sujlana, B., “17 μm microbolometer FPA technology at BAE Systems,” Proc. SPIE, vol. 7298, 72980P, 2009.Google Scholar
5 Murphy, D., Ray, M., Wyles, J., et al., “640 × 512 17 μm Microbolometer FPA and sensor development,” Proc. SPIE, vol. 6542, 65421Z, 2007.Google Scholar
6 Radford, W. A., Wyles, R., Wyles, J., Varesi, J. B., Ray, M., Murphy, D. F., Kennedy, A., Finch, A., Moody, E. A., Cheung, F., Coda, R., Baur, S. T., “Microbolometer uncooled infrared camera with 20-mK NETD,” Proc. SPIE, vol. 3436, 636, 636645, 1998.Google Scholar
7 Russ, M., Bauer, J., Vogt, H., “The geometric design of microbolometer elements for uncooled focal plane arrays,” Proc. SPIE, vol. 6542, 654223, 2007.Google Scholar
8 Vedel, C., Martin, J. L., Ouvrier-Buffet, J. L., Tissot, J. L., Vilain, M., Yon, J. J., “Amorphous-silicon-based uncooled microbolometer IRFPA,” Proc. SPIE, vol. 3698, 276, 1999.Google Scholar
9 Brady, J., Schimert, T., Ratcliff, D., Gooch, R., Ritchey, B., Mccardel, P., Rachels, K., Ropson, S., Wand, M., Weinstein, M., Wynn, J., “Advances in amorphous silicon uncooled IR systems,” Proc. of SPIE, vol. 3698, pp. 161167, 1999.Google Scholar
10 Almasri, M., Butler, D. P., and çelik-Butler, Z., “Self-supporting semiconducting Y-Ba-Cu-O uncooled IR microbolometers with low-thermal mass,” IEEE/JMEMS, vol. 10, no. 3, pp. 469476, 2001.Google Scholar
11 Gary, J.E., çelik-Butler, Z., Butler, D. P., and Almasri, M., “Semiconducting Y-Ba-Cu-O as infrared detecting bolometers,” Proc. SPIE, vol. 3436, pp. 555566, 1998.Google Scholar
12 Sedky, S., Fiorini, P., Baert, K., Hermans, L., Mertens, R., ”Characterization and optimization of infrared poly SiGe bolometers,” IEEE Transaction on Electron Devices, vol. 46, no. 4, pp. 675682, 1999.Google Scholar
13 Leonov, V. N., Creten, Y., Moor, P. De, Bois, B. Du, Goessens, C., Grietens, B., Merken, P., Perova, N. A., Ruttens, G., Hoof, C. A. Van, Verbist, A., Vermeiren, J. P., “Small two-dimensional and linear arrays of polycrystalline SiGe microbolometers at IMEC-XenICs,” Proc. SPIE, vol. 5074, pp. 446457, 2003.Google Scholar
14 Shie, J. S., Chen, Y. M, Yang, M. O., and Chou, B. C. S., “Characterization and modeling of metal-film microbolometer,” IEEE/JMEMS, vol 5, No. 4 December 1996.Google Scholar
15 Clement, M., Iborra, E., Sangrador, J., Barberan, I., “Amorphous GexSi1-xOy sputtered thin films for integrated sensor applications,” J. Vac. Sci. Technol., vol. 19, no. 1, pp. 294298, 2001.Google Scholar
16 Rana, M. M., Butler, D. P., “Radio frequency sputtered Si1-xGex and Si1-xGexOy thin films for uncooled infrared detectors,” Thin Solid Films, vol. 514, pp. 355360, 2006.Google Scholar
17 Ahmed, A. H. Z., Tait, R. N., Oogarah, Tania B., Liu, H. C., Denhoff, Mike W., Sproule, G. I., and Graham, M. J., “A Surface micromachined amorphous GexSi1-xOy bolometer for thermal imaging applications,” Proc. SPIE, vol. 5578, pp. 298308, 2004.Google Scholar
18 Ahmed, A. H., and Tait, R. N., “Characterization of amorphous GexSi1-xOy for micromachined uncooled bolometer applications,” J. appl. Phys., vol. 94, no. 8, pp. 53265332, 2003.Google Scholar
19 Enukova, T. A., Ivanova, N. L., Kulikov, Y. V., Marlyarov, V. G., Khrebtov, I. A., “Amorphous silicon and germanium films for uncooled microbolometers,” Technical Physics Letter, vol. 23, pp. 504506, 1997 Google Scholar
20 Cheng, Q. and Almasri, M., “Silicon germanium oxide (SixGe1-xOy) infrared material for uncooled infrared detection,” Proc. SPIE, vol. 7298, 72980K, 2009.Google Scholar
21 Cheng, Q. and Almasri, M., “Characterization of radio frequency sputtered SixGe1-xOy thin films for uncooled micro-bolometer,” Proc. SPIE, vol. 6940, 694011, 2008.Google Scholar