Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:28:01.168Z Has data issue: false hasContentIssue false

Silicon Epitaxial Regrowth Passivation of SiGe Nanostructures Pattered by AFM Oxidation

Published online by Cambridge University Press:  11 February 2011

Xiang-Zheng Bo
Affiliation:
Center for Photonics and Opto-Electronic Materials, Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA, Email: [email protected]
Leonid P. Rokhinson
Affiliation:
Center for Photonics and Opto-Electronic Materials, Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA, Email: [email protected]
J. C. Sturm
Affiliation:
Center for Photonics and Opto-Electronic Materials, Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA, Email: [email protected]
Get access

Abstract

SiGe quantum devices were demonstrated by AFM oxidation and selective wet etching with features size down to 50 nm. To passivate the devices and eliminate the interface states between Si/SiO2, low temperature regrowth of epitaxial silicon over strained SiGe has been tested. The silicon regrowth on Si0.8Ge0.2 was done by rapid thermal chemical vapor deposition (RTCVD) at 700 °C using a hydrogen pre-cleaning process at 800 °C and 10 torr. SIMS analysis and photoluminescence (PL) of strained SiGe capped with epitaxial regrown silicon show a clean interface. Nano-gaps between doped SiGe filled and overgrown with epitaxial silicon show an electrical insulating property at 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ismail, K., Nelson, S. F., Chu, J. O., and Meverson, B. S., Appl. Phys. Lett. 63: 660 (1993).Google Scholar
[2] Rim, K., Hoyt, J. L., and Gibbons, J. F., IEEE Trans. Electron Devices, 47: 1406 (2000).Google Scholar
[3] Loss, D. and DiVincenzo, D. P., Phy. Rev. A 57: 120 (1998).Google Scholar
[4] Tahan, C., Friesen, M., and Joynt, R., Phy. Rev. B 66: 035314 (2002).Google Scholar
[5] Rokhinson, L. P., Guo, L. J., Chou, S. Y., and Tsui, D. C., Appl. Phys. Lett. 76: 1591 (2000).Google Scholar
[6] Snow, E. S. and Campbell, P. M., Appl. Phys. Lett. 64: 1932 (1994).Google Scholar
[7] Bo, X.-Z., Rokhinson, L. P., Yin, H., Tsui, D. C., and Sturm, J. C., Appl. Phys. Lett. 81: 3263 (2002).Google Scholar
[8] Bo, X.-Z., Rokhinson, L. P., Yin, H., Tsui, D. C., and Sturm, J. C., Proc. Mat. Res. Soc. Symp. 686: A6.5 (2002).Google Scholar
[9] Sanganeria, M. K., Öztürk, M. C., Violette, K. E., Harris, G., Lee, C. A., and Maher, D. M., Appl. Phys. Lett. 66: 1255 (1995).Google Scholar
[10] Oda, K. and Kiyota, Y., J. Electrochem. Soc., 143: 2361 (1996).Google Scholar
[11] Carroll, M. S., Sturm, J. C., and Yang, M., J. Electrochem. Soc. 147: 4652 (2000).Google Scholar
[12] Carroll, M. S., Lanzerotti, L.D., and Sturm, J.C., Proc. Symp. Mat. Res. Soc., 527: 417 (1998).Google Scholar
[13] Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L, Noel, J.-P., and Houghton, D.C., Phys. Rev. Lett. 66: 1362 (1991).Google Scholar