Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T17:32:22.308Z Has data issue: false hasContentIssue false

Shallow-impurity-related photoluminescence in homoepitaxial GaN

Published online by Cambridge University Press:  17 March 2011

V. Kirilyuk
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
M. Zielinski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
P.C.M. Christianen
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
A.R.A. Zauner
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
J.L. Weyhera
Affiliation:
High Pressure Research Center, Polish Academy of Science, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
P.R. Hageman
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
P.K. Larsen
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
Get access

Abstract

Photoluminescence (PL) spectra of GaN epitaxial layers grown on vicinal (0001) GaN substrates (i.e. N-polar) demonstrate high optical quality showing free exciton transitions in addition to narrow bound-exciton peaks (line width 1-2 meV). In contrast, N-polar films deposited on exactly oriented (0001) substrates exhibit a broad PL emission resulting from high free carrier concentrations. As derived from Secondary Ion Mass Spectroscopy (SIMS), exact (0001) epilayers reveal very high concentrations of oxygen (1.5×1019 atom/cm3), which are about one order of magnitude higher then in the layers grown on a 4°-off substrate. It is therefore concluded that oxygen is responsible for the high free carrier concentration and could be a dominant shallow donor in the homoepitaxial N-polar films. It is also shown that incorporation of oxygen strongly depends on the polarity of the films (Ga or N). Concentrations of other impurities, such as Si, C and H are found to be similar for homoepitaxial films of both polarities being consistent with the results of exciton-related PL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Sohaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., and Stutzmann, M., J. Appl. Phys., 87, 334 (2000), O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys., 85, 3222 (1999).Google Scholar
2. Weyher, J. L., Zauner, A. R. A., Brown, P. D., Karouta, F., Barcz, A., Wojdak, M., and Porowski, S., Phys. Stat. Sol. (a), 176, 573 (1999).Google Scholar
3. Kornitzer, K., Ebner, T., Thonke, K., Sauer, R., Kirchner, C.. Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., and Porowski, S., Phys. Rev. B, 60, 1471 (1999).Google Scholar
4. Zauner, A.R.A. Weyher, J.L., Pomp, M., Kirilyuk, V., Grzegory, I., Enckevort, W.J.P van, Schermer, J.J., Hageman, P.R., and Larsen, P.K., J. Crystal Growth, 210, 435 (2000).Google Scholar
5. Kirilyuk, V., Zauner, A. R. A., Christianen, P. C. M., Weyher, J. L., Hageman, P. R., and Larsen, P. K., Appl. Phys. Lett., 76, 2355 (2000).Google Scholar
6. Grzegory, I., Bockowski, M., Lucznik, B., Wróblewski, M., Krukowski, S., Weyher, J., Nowak, G., Suski, T., Leszczynski, M., Teisseyre, H., Litwin-Staszewska, E., and Porowski, S., Mater. Res. Soc. Symp. Pros., 482, 15 (1998).Google Scholar
7. Ericson, J. W., Gao, Y., and Wilson, R. G., Mater. Res. Soc. Symp. Pros., 395, 363 (1996).Google Scholar
8. Wetzel, C., Suski, T., Ager, J. W. III, Weber, E. R., Haller, E. E., Fischer, S., Meyer, B. K., Molnar, R. J., and Perlin, P., Phys. Rev. Lett., 78, 3923 (1997).Google Scholar
9. Baranowski, J. M., Liliental-Weber, Z., Korona, K., Pakula, K., Stepniewski, R., Wysmolek, A., Grzegory, I., Nowak, G., Porowski, S., Monemar, B., and Bergman, P., Mater. Res. Soc. Symp. Pros., 449, 393 (1997).Google Scholar
10. Kirilyuk, V. et al. (unpublished)Google Scholar
11. Haynes, J. R., Phys. Rev. Lett., 4, 351 (1960).Google Scholar
12. Götz, W., Johnson, N. M., Chen, C., Kuo, C., and Imler, W., Appl. Phys. Lett., 68, 3144 (1996).Google Scholar
13. Wang, Y. J., Ng, H. K.. Doverspike, K., Gaskill, D. K., Ikedo, T., Akasaki, I., and Amano, H., J. Appl. Phys., 79, 8007 (1996).Google Scholar
14. Perlin, P., Suzuki, T., Teisseyre, H., Lesczynski, M.. Grezgory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., and Moustakas, T. D., Phys. Rev. Lett., 75, 296 (1995).Google Scholar
15. Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B, 51, 17255 (1995).Google Scholar
16. Eckey, L., Podlowski, I., Göldner, A., Hoffman, A., Broser, I., Meyer, B. K., Volm, D., Streibl, T., Hiramatsu, K., Detchprohm, T., Amano, H., and Akasaki, I., Inst. Phys. Conl. Ser., 142, 943 (1996).Google Scholar
17. Chung, B.-C. and Gershenzon, M., J. Appl. Phys., 72, 651 (1992).Google Scholar