Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:55:41.388Z Has data issue: false hasContentIssue false

Screw Dislocations in MBE GaN Layers Grown on Top of HVPE Layers: Are They Different?

Published online by Cambridge University Press:  11 February 2011

Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
D. Zakharov
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
J. Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
J. Washburn
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
M. A. O'Keefe
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
H. Morkoc
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
Get access

Abstract

Transmission Electron Microscopy was applied to study HVPE template and MBE over-layers in plan-view and cross-section. It was observed that screw dislocations in the HVPE layers are decorated by small voids arranged along the screw axis. However, no voids were observed along screw dislocations in MBE overlayers grown with excess Ga, despite the fact that Ga droplets were observed on the layer surface as well as imbedded in the layer. By applying a direct reconstruction of the phase and amplitude of the scattered electron wave from a focal series of high-resolution images, the core structures of screw dislocations in both materials have been studied and show that all screw dislocations have filled cores. Dislocation cores in MBE samples grown Ga-rich and N-rich show no substantial differences and no stoichiometric change compared to the matrix. However, in HVPE materials, single atomic columns show substantial differences in intensities and indicate the possibility of Ga presence. These Ga-rich cores might be responsible for the attraction impurities forming voids in their close vicinity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P., and Speck, J., Appl. Phys. Lett. 68, 643 (1996).Google Scholar
2. Ponce, F. A., Cherns, D., Young, W. T., and Steeds, J. W., Appl. Phys. Lett. 69, 770 (1996).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
4. Lester, S.D., Ponce, F. A., Craford, M.G., and Steigewald, D.A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
5. Wright, A. F. and Furthmuller, J., Appl. Phys. Lett. 72, 3467 (1998).Google Scholar
6. Elsner, J., Jones, R., Heggie, M. I., Stich, P. K., Haugk, M., Frauenheim, Th., Öberg, S., and Briddon, P. R., Phys. Rev. B 58, 12 571 (1998).Google Scholar
7. Keller, S., Keller, B. P., Wu, Y-F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 68, 1525 (1996).Google Scholar
8. Elsner, J., Jones, R., Sitch, P. K., Porezag, V. D., Elstner, M., Frauenheim, Th., Heggie, M. I., Öberg, S., and Briddon, P. R., Phys. Rev. Lett. 79, 3672 (1997).Google Scholar
9. Nam, O., Bremser, M.D., and Davis, R.F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
10. Rosner, S.J., Carr, E.C., Ludowise, M. J., Giromali, G., and Erikson, H.I., Appl. Phys., 70, 420 (1997).Google Scholar
11. Sugahara, T., Sato, H., Hao, M.S., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L.T., and Sakai, S., Jpn. J. Appl. Phys 37, L398 (1998).Google Scholar
12. Wright, A. F. and Grossner, U., Appl. Phys. Lett. 73, 2751 (1998).Google Scholar
13. Look, D.C. and Sizelowe, J.R., Phys. Rev. Lett. 82, 1237 (1999).Google Scholar
14. Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
15. Arslan, I. and Browning, N.D., Phys. Rev. B 65, 075310 (2002).Google Scholar
16. Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
17. Liliental-Weber, Z., Washburn, J., Pakula, K., and Baranowki, J., Microscopy and Microanalysis the J. Electr. Microsc. Soc. Am. 3, 436 (1997).Google Scholar
18. Cherns, D., J. Phys. Condens. Matter 12, 10205 (2000).Google Scholar
19. Hsu, J.W.P., Manfra, M.J., Chu, S.N.G., Chen, C.H., Pfeiffer, L.N., and Molnar, R.J., Appl. Phys. Lett., 78, 3980 (2001).Google Scholar
20. Northrup, J.E., Appl. Phys. Lett. 78, 2286 (2001).Google Scholar
21. Northrup, J.E., Phys. Rev. B. 66, 045204 (2002).Google Scholar
22. Thust, A., Coene, W.M.J., et al, Ultramicroscopy 64, 211, (1996).Google Scholar