Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:45:00.949Z Has data issue: false hasContentIssue false

Reversible Light-Induced On-Off Switching of Charge Traps in Quantum Dots Probe by Variable-Pulse-Rate Photoluminescence Spectroscopy.

Published online by Cambridge University Press:  22 April 2013

Mauro Aresti
Affiliation:
Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (CA), Italy
Marco Marceddu
Affiliation:
Centro Grandi Strumenti d'Ateneo, Università di Cagliari, I-09042 Monserrato (CA), Italy
Michele Saba
Affiliation:
Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (CA), Italy
Francesco Quochi
Affiliation:
Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (CA), Italy
Jing Huang
Affiliation:
Department of Chemistry, The University of Chicago, Chicago, IL 60637
Dmitri V. Talapin
Affiliation:
Department of Chemistry, The University of Chicago, Chicago, IL 60637
Andrea Mura
Affiliation:
Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (CA), Italy
Giovanni Bongiovanni
Affiliation:
Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (CA), Italy
Get access

Abstract

We devise an experiment, variable pulse rate photoluminescence, to control the accumulation of charges and the activation of charge traps in colloidal nanocrystals. The dynamics of these states is studied, with pulse repetition frequencies ranging from a few hundred hertz to the megahertz regime, by monitoring photoluminescence spectrograms with picosecond temporal resolution. We find that both photocharging and charge trapping contribute to photoluminescence quenching, and both processes can be reversibly induced by light.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. (Springer, 2010).Google Scholar
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical reviews 110, 389458 (2010).CrossRefGoogle ScholarPubMed
Nirmal, M. et al. . Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802804 (1996).CrossRefGoogle Scholar
Shimizu, K. et al. . Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 63, 205316 (2001).CrossRefGoogle Scholar
Mahler, B. et al. . Towards non-blinking colloidal quantum dots. Nat Mater 7, 659664 (2008).CrossRefGoogle ScholarPubMed
Saba, M. et al. . Exciton-Exciton Interaction and Optical Gain in Colloidal CdSe/CdSDot/Rod Nanocrystals. Adv. Mater. 21, 4942–+ (2009).CrossRefGoogle ScholarPubMed
Talapin, D. V. et al. . Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett 3, 16771681 (2003).CrossRefGoogle Scholar
Marceddu, M. et al. . Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals. Nanotechnology 23, 015201 (2011).CrossRefGoogle Scholar
Wang, C., Wehrenberg, B. L., Woo, C. Y. & Guyot-Sionnest, P. Light Emission and Amplification in Charged CdSe Quantum Dots. J Phys Chem B 108, 90279031 (2004).CrossRefGoogle Scholar
Califano, M., Franceschetti, A. & Zunger, A. Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 75, 115401 (2007).CrossRefGoogle Scholar
Oron, D., Kazes, M., Shweky, I. & Banin, U. Multiexciton spectroscopy of semiconductor nanocrystals under quasi-continuous-wave optical pumping. Phys. Rev. B 74, 115333 (2006).CrossRefGoogle Scholar
Franceschetti, A. & Zunger, A. Optical transitions in charged CdSe quantum dots. Phys. Rev. B 62, R16287R16290 (2000).CrossRefGoogle Scholar