Article contents
Reproducibility and Uniformity of MOVPE Planetary Reactors® for the Growth of GaN Based Materials
Published online by Cambridge University Press: 10 February 2011
Abstract
Production scale MOVPE reactors such as the AIXTRON 2000HT Planetary Reactor® offer unique possibilities to fabricate highly efficient GaN based devices at a low cost of ownership. The scope of this investigation is to understand the dependence of wavelength, thickness and doping uniformity on parameters such as total gas flow, temperature distribution in the reactor and purity of the precursors. Wafer to wafer uniformity in the 7×2” wafer configuration as well as run to run reproducibility will be discussed. We obtained a wafer to wafer standard deviation of 2.7% for the sheet resistance of Si-doped GaN/InGaN/GaN double heterostructures. The wafer to wafer standard deviation of the main PL emission wavelength at 412.3 nm is 1.8 nm. The run to run reproducibility of the main emission wavelength is <3 nm. We obtained reproducible resistivities of GaN:Mg layers of less than 1 Ωcm which corresponds to 5−10×1017cm−3. Statistical data of p-type doping taking 20 runs into account gave an average hole concentration of 5.5×1017cm−3. Together with the wafer to wafer thickness uniformity of <1% the most sensitive layer properties are well controlled to allow a cost-effective mass production process. Structures such as SQW and MQW structures were grown to understand the performance of a production system with respect to interface properties.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
REFERENCES
- 1
- Cited by