Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:56:28.178Z Has data issue: false hasContentIssue false

Recent Progress of Alloyed Ohmic Contacts to GaAs Compound Semiconductors

Published online by Cambridge University Press:  25 February 2011

Masanori Murakami
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606, Japan
A. Otsuki
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606, Japan
K. Tanahashi
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606, Japan
H. J. Tarata
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606, Japan
A. Callegari
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
N. Lustig
Affiliation:
IBM GTD, Route 52, Hopwell Junction, New York 12533
Get access

Abstract

Low resistance, alloyed AuGeNi Ohmic contacts have been extensively used in the current manufacturing GaAs devices. However, extension of usage of these devices to Very Large Scale Integration levels requires the contacts with excellent thermal stability, shallow diffusion depth, and smooth contact surface in addition to low contact resistance. In the present paper recent studies for development of “non-gold” Ohmic contacts which improve the poor contact properties of the alloyed Ohmic contacts are rev i ewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFErences

1. Gunn, J. B., IBM J. Res. Develop. 8 (1964) 141.Google Scholar
2. Hansen, M. and Andeko, K., in “Consitution of Binary AlloysMcGraw-Hill, New York (1958) p. 206.Google Scholar
3. Kim, T. and Chung, D. D. L., J. Vac. Sci. Technol. B4 (1986) 762.Google Scholar
4. Auvray, P., Guivarc'h, A., L'Haridon, H., and Mercier, J. P., Thin Solid Films 127 (1985) 39.CrossRefGoogle Scholar
5. Marlow, G. S., Das, M. B., and Tongson, L., Sol. St. Electron. 26 (1983) 259.Google Scholar
6. Lakhani, A. A., Potter, R. C., and Beyea, D. M., Semicond. Sci. Technol. 3 (1988) 605.Google Scholar
7. Braslau, N., Gunn, J. B., and Staples, J. L., Sol. Stat. Electron. 10 (1967) 381.Google Scholar
8. Staples, J. L., U. S. Patent. 3,386,867 (1968).Google Scholar
9. Gunn, J. B., IEEE Trans, on Electron. Dev. ED- 23 (1976) 705.Google Scholar
10. Callegari, A., Pan, E. T. S., and Murakami, M., Appl. Phys. Lett. 46 (1985) 1141.Google Scholar
11. Callegari, A., Lacey, D., and Pan, E. T. S., Sol. Stat. Electron. 29 (1986) 523.Google Scholar
12. Callegari, A., Murakami, M., Baker, J. M., Shin, Y. C., and Lacey, D., Proc. 17th Europ. Sol. Stat. Dev. Res. Conf. ESSDERC 87 (1988) 601.Google Scholar
13. Shin, Y. C., Murakami, M., Wilkie, E. L., and Callegari, A., J. Appl. Phys. 62 (1987) 582.CrossRefGoogle Scholar
14. Kamada, M., Suzuki, T., Nakamura, F., Mori, Y., and Arai, M., Appl. Phys. Lett. 49 (1986) 1263.CrossRefGoogle Scholar
15. Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H., and Wilkie, E. L., J. Appl. Phys. 54 (1983) 6952.CrossRefGoogle Scholar
16. Murakami, M., Childs, K. D., Baker, J. M., and Callegari, A., J. Vac. Sci. Technol. B4 (1986) 903.CrossRefGoogle Scholar
17. Lustig, N., Murakami, M., Norcott, M., and McGann, K., Appl. Phys. Lett. 58 (1991) 2093.CrossRefGoogle Scholar
18. Tanahashi, K., Takata, H. J., Otsuki, A., and Murakami, M., J. Appl. Phys. (submitted).Google Scholar