Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:32:43.832Z Has data issue: false hasContentIssue false

Real-Time Kinetic Analysis of Hydrogen Abstraction and Etching Reactions Using Pulsed-Gas PECVD of Amorphous and Microcrystalline Silicon

Published online by Cambridge University Press:  15 February 2011

Easwar Srinivasan
Affiliation:
Department of Chemical Engineering, N.C. State University, Raleigh, NC 27695
Gregory N. Parsons
Affiliation:
Department of Chemical Engineering, N.C. State University, Raleigh, NC 27695
Get access

Abstract

Hydrogen elimination reactions, abstraction and etching, are monitored in real-time using a differentially pumped mass spectrometer, while intermittently exposing a hydrogenated silicon surface to atomic deuterium. The mass spectrometer signals are used to predict the kinetics of the abstraction reaction, and to qualitatively treat the etch reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Asano, A., Appl. Phys. Lett, 56, 533, (1990).Google Scholar
2. Otobe, M., and Oda, S., Jpn. J. Appl. Phys., 31, 1948, (1992).Google Scholar
3. Finger, F., Carius, R., Hapke, P., Houben, L., Luysberg, M., and Tzolov, M., Mater. Res. Soc. Symp. Proc., 452, (1996).Google Scholar
4. Abelson, J.R., Applied Physics A, 56, 493, (1993).Google Scholar
5. Collins, R.W., and Yang, B.Y., J. Vac. Sci. Technol., B7, 1155, (1989).Google Scholar
6. Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., Appl. Phys. Lett., 57, 1028, (1990).Google Scholar
7. Matsuda, A., J. Non-Cryst. Solids, 59/60, 767, (1983).Google Scholar
8. Smith, D.L., Alimonda, A.S., Chen, C.C., Ready, S.E., and Wacker, B., J. Electrochem. Soc., 137, 614, (1990).Google Scholar
9. Courtney, C.H., Smith, B.C., and Lamb, H.H., J. Appl. Phys., to be submitted, (1997).Google Scholar
10. Jasinski, J.M., J. Vac. Sci. Technol., A13, 1935, (1995).Google Scholar
11. Chowdhury, A.I., Read, W.W., Rubloff, G.W., Tedder, L.L., and Parsons, G.N., J. Vac. Sci. Technol., B15, (1997).Google Scholar
12. Abelson, J.R., Mandrell, L., and Doyle, J.R., J. Appl. Phys., 76, 1856, (1994).Google Scholar
13. Chiang, C.M., Gates, S.M., Lee, S.S., Kong, M., and Bent, S.F., J. Phys. Chem., to be submitted, (1997).Google Scholar
14. Srinivasan, E., and Parsons, G.N., J. Appl. Phys., 81, 2847, (1997).Google Scholar
15. Srinivasan, E., Yang, H., and Parsons, G.N., J. Chem. Phys., 105, 5467, (1996).Google Scholar
16. Koleske, D.D., Gates, S.M., and Jackson, B., J. Chem. Phys., 101, 3301, (1994).Google Scholar
17. Schneider, T., Hydrogen plasma interactions with silicon surfaces., Ph.D. thesis,, North Carolina State University (1994).Google Scholar
18. Read, W.W., and Parsons, G.N., J. Vac. Sci. Technol. A, to be submitted, (1997).Google Scholar