Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:46:25.405Z Has data issue: false hasContentIssue false

Raman Studies of Microstructural Changes in Amorphous Silicon-Boron Alloys Due to Annealing

Published online by Cambridge University Press:  21 February 2011

G. Yang
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
P. Bai
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Y.-J Wu
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
B. Y. Tong
Affiliation:
Center of Chemical Physics; Surface Science Laboratory, University of Western Ontario, London, Ontario, Canada
S. K. Wong
Affiliation:
Center of Chemical Physics; Surface Science Laboratory, University of Western Ontario, London, Ontario, Canada
J. Du
Affiliation:
Center of Chemical Physics; Surface Science Laboratory, University of Western Ontario, London, Ontario, Canada
I. Hill
Affiliation:
Surface Science Laboratory, University of Western Ontario, London, Ontario, Canada
Get access

Abstract

Crystallization of amorphous Sil−x.Bx alloy films by annealing is studied. Amorphous Sil−xBx. alloy films with composition of boron x ranging from 0.01 to 0.5 are deposited on Si substrates at a temperature of 480° in a low pressure chemical vapor deposition (LPCVD) system. Three films with the boron contents, 1%, 7% and 45%, are used in this study. The films are annealed in a nitrogen ambient for 30 minutes at temperatures between 600°C and 900°C. Raman spectra of the silicon vibrational mode serve as a indicator for the microstructure of the Sil−xBx, alloy films. Quantitative estimates of the volume fraction of the crystalline silicon component in respect to the amorphous silicon component in the films are calculated based on the silicon TO mode. The results show that while for the film with the boron content of 1% crystallization occurs at the annealing temperature of 500°C, the annealing temperature of 7000C is required to observe crystallization in the films with the boron contents of 7% and 45%. As the annealing temperature increases, the volume fraction of the crystalline component increases. For a given annealing temperature, the rate of crystallization depends inversely on the boron content in the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gonzalez-Hernandez, J. and Tsu, R., Appl. Phys. Lett., 42, 90(1983).Google Scholar
2. Morimoto, A., Kumeda, M., and Shimizu, T., J. Non-Cryst. Solids, 59&60, 537(1983).Google Scholar
3. Morin, F. and Morrel, M., Appl. Phys. Lett., 35, 686(1979).Google Scholar
4. Iqbal, Z., Webb, A. P., and Veprek, S., Appl. Phys. Lett., 36, 163(19800.Google Scholar
5. Hamasaki, T., kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett., 37, 1084(1980).Google Scholar
6. Tsu, R., Chao, S. S., Izu, M., Ovshinsky, S. R., Jan, G., and Pollak, F. H., J. Phys. Paris Coll. C4, 269(1981).Google Scholar
7. Ishiwara, H., Tamba, A., Yamamoto, H., and Furukawa, S., Jpn. J. Appl. Phys., 24, L513(1985).Google Scholar
8. Alvi, N. S., Tang, S. M., Kwor, R., and Fulcher, M. R., J. Appl. Phys., 62, 4878(1987).Google Scholar
9. Bisaro, R., Magarino, J., Zellama, K., Squelard, S., Germain, P., and Morhange, J. F., Phys. Rev. B, 31, 3568(1985).Google Scholar
10. Yang, G., Bai, P., Tong, B. Y., Wong, S. K., and Hill, I., Solid State Commun., 72, 159(1989).Google Scholar
11. Tong, B. Y., Wong, S. K., Yao, J., Lau, W. M., Du, N., and John, P. K., Proc. MRS Spring Meeting, 1987.Google Scholar
12. Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett., 40, 534(1982).Google Scholar
13. Stutzmann, M., Phys. Rev. B, 35, 5921(1987).Google Scholar
14. Massalsky, T. B., editor-in-chief, Binary Alloy Phase Diagrams, vol. 1, American Society for Metals, October, 1986. p. 385386.Google Scholar