Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:31:19.615Z Has data issue: false hasContentIssue false

Properties of Phase Change Materials Modified by Ion Implantation

Published online by Cambridge University Press:  13 July 2011

Simone Raoux
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA
Guy M. Cohen
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA
Marinus Hopstaken
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA
Siegfried Maurer
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA
Jean L. Jordan Sweet
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA
Get access

Abstract

Ion implantation of germanium and carbon ions into thin films of Ge2Sb2Te5 (GST) and GeTe was applied to modify the properties of these phase change materials. It was found that it is possible to amorphize crystalline GST and GeTe using ion implantation for optimized ion doses and energies which depend on the film thickness, ion species and capping layer. A relatively low minimum dose is required for complete amorphization as judged by the absence of diffraction peaks in x-ray diffraction (XRD) scans. It is 4–5×1013 cm−2 for germanium implantation into GST, and slightly higher (1014 cm−2) for germanium implantation into GeTe. The properties of the re-amorphized films depend on ion species, dose and energy. The re-crystallization temperature of re-amorphized GST by ion implantation is comparable or higher than as-deposited amorphous GST. Carbon implantation in particular leads to a large increase in the crystallization temperature Tx. A carbon dose of 1016 cm−2 implanted into 20 nm amorphous GST yielded a crystallization temperature of 300 ºC, much higher than the crystallization temperature of 160 ºC we recorded for as-deposited, amorphous GST. Similarly, high dose carbon implantation into amorphous GeTe leads to large increase in Tx. We recorded a shift in Tx from 195 ºC for as-deposited GeTe to 400 ºC for C-implanted GeTe. Crystalline GeTe re-amorphized by a low dose germanium ion implantation exhibits a re-crystallization temperature below Tx of as-deposited amorphous GeTe and Tx increased with the implanted Ge dose to a crystallization temperature above that of unimplanted GeTe. Ion implantation can be regarded an additional tool to create phase change materials with different and improved switching properties that cannot be achieved by conventional sputter deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wuttig, M. and Yamada, N., Nature Mater. 6, 824 (2007).Google Scholar
2. Raoux, S., Ann. Rev. Mater. Res., 39, 25 (2009).Google Scholar
3. Ovshinsky, S. R.. Phys. Rev. Lett. 22, 1450 (1968).Google Scholar
4. Shi, L., in Phase Change Materials: Science and Applications, Raoux, S. and Wuttig, M., Eds., Springer, Berlin, Heidelberg, New York, pp. 251 (2009).Google Scholar
5. Yamada, N., Kojima, R., Nishihara, T., Tsuchino, A., Tomekawa, Y., and Kusada, H., Europ. Phase Change and Ovonic Sci. Symp., Aachen, Germany, 09 2009. Online at http://www.epcos.org/library/papers/pdf_2009/Yamada%20et%20al%20100%20GB%20rewritable.pdf Google Scholar
6. Burr, G. W., Breitwisch, M. J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L. A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R., J. Vac. Sci. Technol. B, 28, 223 (2010).Google Scholar
7. Raoux, S., Shelby, R., Munoz, B., Hitzbleck, M., Krebs, D., Salinga, M., Woda, M., Austgen, M., Chung, K.-M., and Wuttig, M., Europ. Phase Change and Ovonic Science Symp., Prague, Czech Republic, 09 2008. Online at http://www.epcos.org/library/papers/pdf_2008/Oral/Raoux.PDF Google Scholar
8. Lee, B.-S., Burr, G. W., Shelby, R. M., Raoux, S., Rettner, C. T., Bogle, S. N., Darmawikarta, K., Bishop, S. G., and Abelson, J. R., Science 326, 980 (2009).Google Scholar
9. Mio, A. M., Carria, E., De Bastiani, R., Miritello, M., Bongiorno, C., D’Arrigo, G., Spinella, C., Grimaldi, M. G., and Rimini, E., Mater. Res. Soc. Proc. Vol. 1251, 1251-H02-03 (2010).Google Scholar
10. Raoux, S., Cohen, G. M., Shelby, R. M., Cheng, H.-Y., Madan, A., Ott, J., and Jordan-Sweet, J. L., Europ. Phase Change and Ovonic Science Symp., Milano, Italy, 09 2010. Online at http://www.epcos.org/library/papers/pdf_2010/Oral/D01-Raoux.pdf Google Scholar
11. Raoux, S., Cohen, G. M., Shelby, R. M., Cheng, H.-Y., and Jordan-Sweet, J. L., Mater. Res. Soc. Symp. Proc. Vol. 1251, 1251-H02-06 Google Scholar
12. Rimini, E., De Bastiani, R., Carria, E., Grimaldi, M. G., Nicotra, G., Bongiorno, C., and Spinella, C., J. Appl. Phys. 105, 123502 (2009).Google Scholar
13. De Bastiani, R., Pirro, A. M., Grimaldi, M. G., Rimini, E., Baratta, G. A., and Strazzulla, G., Appl. Phys. Lett. 92, 241925 (2008).Google Scholar
14. Fons, P., Osawa, H., Kolobov, A. V., Fukaya, T., Suzuki, M., Uruga, T., Kawamura, N., Tanida, H., and Tominaga, J., Phys. Rev. B 82, 041203 (2010).Google Scholar
15. Kolobov, A., Fons, P., and Tominaga, J., MRS Spring Meeting, San Francisco (2011), paper R5.2 Google Scholar
16. Kolobov, A.V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., and Uruga, T., Phys. Rev. Lett. 97, 035701 (2006).Google Scholar
17. Jeong, T. H., Kim, M. R., Seo, H., Park, J. W., and Yeon, C., Jpn. J. Appl. Phys. 39, 2775 (2000).Google Scholar
18. Horii, H., Yi, J. H., Park, J. H., Ha, Y. H., Baek, I. G., Park, S. O., Hwang, Y. N., Lee, S. H., Kim, Y. T., Lee, K. H., Chung, U.-I., and Moon, J. T., Dig. Tech. Papers Symp. VLSI Technol., p. 177 (2003).Google Scholar
19. Jeong, T. H., Seo, H., Le, K. L., Choi, S. M., Kim, S. J., and Kim, S. Y., Jpn. J. Appl. Phys. 40, 1609 (2001).Google Scholar
20. Jang, M. H., Park, S. J., Lim, D. H., Cho, M.-H., Do, K. H., Ko, D.-H., and Sohn, H. C., Appl. Phys. Lett. 95, 012102 (2009).Google Scholar
21. Olson, J. K., Li, H., Viner, J. M., and Taylor, P. C., J. Appl. Phys. 99, 103508 (2006).Google Scholar
22. Liu, B., Zhang, T., Xia, J., Song, Z., Feng, S., and Chen, B., Semicond. Sci. Technol. 19, L61 (2004).Google Scholar
23. Privatera, S., Rimini, E., Bongiorno, C., and Zonca, R., Europ. Phase Change and Ovonic Science Symp. Balzers, Liechtenstein, 09 2004. Online at http://www.epcos.org/library/papers/pdf_2004/05paper_privitera.pdf Google Scholar
24. Privatera, S., Rimini, E., and Zonca, R., Appl. Phys. Lett. 85, 3044 (2004).Google Scholar
25. Shelby, R. M. and Raoux, S., J. Appl. Phys. 105, 104902 (2009).Google Scholar
26. Yamada, N., Takao, M., and Takenaga, M., Proc. SPIE 695, Optical Data Storage II, San Diego, p. 79 (1986).Google Scholar
27. Ziegler, J. F., Biersack, J. P., and Littmark, U., The stopping and the Range of Ions in Solids, Pergamon New York (1985).Google Scholar
28. Lee, T.-Y., Yim, S.-S., Lee, D., Lee, M.-H., Ahn, D.-H., and Kim, K.-B., Appl. Phys. Lett. 89, 163503 (2006).Google Scholar
29. Cheng, H.-Y., Raoux, S., and Chen, Y.-C., J. Appl. Phys. 107, 074308 (2010).Google Scholar
30. Raoux, S., Cheng, H.-Y., Jordan-Sweet, J., Munoz, B., and Hitzbleck, M., Appl. Phys. Lett. 94, 183114 (2009).Google Scholar
31. Borisenko, K., Chen, Y., Cockayne, D. J. H., Song, S. A., and Jeong, H. S., Acta Mater. (2011), doi:10.1016/j.actamat.2011.03.057.Google Scholar
32. Czubatyi, W., Lowrey, T., and Kostylev, S., Europ. Phase Change and Ovonic Sci. Symp., Grenoble, France (2006). Online at http://www.epcos.org/library/papers/pdf_2006/pdf_Invited/Czubatyj.pdf Google Scholar
33. Cheong, B.-k., Jeong, J.-h., Kang, D.-H., Jung, H. J., Lee, T. S., Kim, I. H., Kim, W. M., and Lee, K. S., US patent 7,632,456, 12 15 , 2009.Google Scholar
34. Bruns, G., Merkelbach, P., Schlockerman, C., Salinga, M., Wuttig, M., Happ, T. D., Philipp, J. B., Kund, M., Appl. Phys. Lett. 95, 043108 (2009).Google Scholar
35. Sousa, V., Perniola, L., Fantini, A., Betti Beneventi, G., Gourvest, E., Loubriat, S., Bastard, A., Roule, A., Persico, A., Feldis, H., Toffoli, A., Blanchier, D., Maitrejean, S., Hyot, B., Nodin, J. F., Jahan, C., Reimbold, G., Billon, T., André, B., De Salvo, B., Boulanger, F., Lhostis, S., Mazoyer, P., Bensahel, D., Zuliani, P., and Annunziata, R., Europ. Phase Change and Ovonic Sci. Symp., Milano, Italy (2010). Online at http://www.epcos.org/library/papers/pdf_2010/Posters/PA11-Sousa.pdf Google Scholar
36. Betti Beneventi, G., Perniola, L., Fantini, A., Blanchier, D., Toffoli, A., Gourvest, E., Maitrejean, S., Sousa, V., Jahan, C., Nodin, J. F., Persico, A., Loubriat, S., Roule, A., Lhostis, S., Feldis, H., Reimbold, G., Billon, T., De Salvo, B., Larcher, L., Pavan, P., Bensahel, D., Mazoyer, P., Annuziata, R., and Boulanger, F., Proc. Europ. Solid State Device Res. Conf ESSDERC, Ceville, Spain (2010).Google Scholar
37. Cohen, G., Raoux, S., Hopstaken, M., and Maurer, S., MRS Spring Meeting, San Francisco (2011), paper R5.7.Google Scholar
38. Okabe, T. and Nakagawa, M., J. Non-Cryst. Solids 88, 182 (1986).Google Scholar
39. Raoux, S., Munoz, B., Cheng, H.-Y., and Jordan-Sweet, J. L., Appl. Phys. Lett. 95, 143188 (2009).Google Scholar